[LintCode/LeetCode] Unique Paths II

本文介绍了一种解决网格中存在障碍物时寻找从起点到终点的唯一路径数量的方法。文章详细阐述了两种动态规划算法:二维DP和一维DP,并提供了具体的实现代码。

Problem

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

Notice

m and n will be at most 100.

Example

For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note

和Unique Path完全一样的做法,只要在初始化首行和首列遇到obstacle时置零且break即可。对了,数组其它元素遇到obstacle也要置零喏,不过就不要break啦。

Solution

二维DP

public class Solution {
    public int uniquePathsWithObstacles(int[][] A) {
        int m = A.length, n = A[0].length;
        int[][] dp = new int[m][n];
        for (int i = 0; i < m; i++) {
            if (A[i][0] == 0) dp[i][0] = 1;
            else break;
        }
        for (int j = 0; j < n; j++) {
            if (A[0][j] == 0) dp[0][j] = 1;
            else break;
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (A[i][j] == 0) dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
}

一维DP

public class Solution {
    public int uniquePathsWithObstacles(int[][] A) {
        int n = A[0].length;
        int[] dp = new int[n];
        dp[0] = 1;
        for (int i = 0; i < A.length; i++) {
            for (int j = 0; j < n; j++) {
                if (A[i][j] == 1) dp[j] = 0;
                else if (j > 0) dp[j] += dp[j-1];
            }
        }
        return dp[n-1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值