【文本挖掘】模拟退火英文分词

本文介绍了一种基于迭代优化的文本分词方法,该方法通过寻找文本中最常出现的重复项来构建词典,并利用代价函数指导词典与分词结果的优化过程。算法采用模拟退火策略进行迭代求解,最终得到较优的分词结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大概原理是找到文本中重复项最多的文本作为词典,代价函数为词典的累计词长和文本分词数之和,迭代找到代价函数最小值所对应的词典和分词结果。方法简单,跑出来的结果也挺有意思。

 1 from random import randint
 2 
 3 
 4 def segment(text,segs):
 5     words=[]
 6     last=0
 7     for i in range(len(segs)):
 8         if segs[i]=='1':
 9             words.append(text[last:i+1])
10             last=i+1
11     words.append(text[last:])
12     return words
13 
14 def evaluate(text,segs):
15     words=segment(text, segs)
16     text_size=len(words)
17     lexicon_size=len(''.join(list(set(words))))
18     return text_size+lexicon_size
19 
20 def filp(segs,pos):
21     return segs[:pos]+str(1-int(segs[pos]))+segs[pos+1:]
22 
23 def filp_n(segs,n):
24     for i in range(n):
25         segs=filp(segs,randint(0,len(segs)-1))
26     return segs
27 
28 def anneal(text,segs,iterations,cooling_rate):
29     temperature=float(len(segs))
30     while temperature>0.5:
31         best_segs,best=segs,evaluate(text, segs)
32         for i in range(iterations):
33             guess=filp_n(segs,int(round(temperature)))
34             score=evaluate(text,guess)
35             if score<best:
36                 best,best_segs=score,guess
37         score,segs=best,best_segs
38         temperature=temperature/cooling_rate
39         print  temperature,evaluate(text,segs),segment(text,segs)
40     print '----------END--------------------'
41     return segs

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值