28.3. Layout

28.3.1. 

setContentView(R.layout.view);		
	




原文出处:Netkiller 系列 手札
本文作者:陈景峯
转载请与作者联系,同时请务必标明文章原始出处和作者信息及本声明。

import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.optimize import minimize # ====================== 参数设置 ====================== # 流域参数 AREA = 553 # 流域面积(km²) DT = 3 # 计算时段长度(小时) # 产流参数 (示例值,实际应通过任务1优选) params = { &#39;WM&#39;: 140, # 张力水蓄水容量(mm) &#39;WUM&#39;: 20, # 上层张力水容量(mm) &#39;WLM&#39;: 60, # 下层张力水容量(mm) &#39;WDM&#39;: 60, # 深层张力水容量(mm) &#39;b&#39;: 0.3, # 张力水蓄水容量曲线指数 &#39;c&#39;: 0.16, # 深层蒸发系数 &#39;Kc&#39;: 0.85, # 蒸发折算系数(应通过优化确定) &#39;fc&#39;: 10.0, # 稳定下渗率(mm/3h) &#39;WU0&#39;: 20, # 初始上层张力水(mm) - 取容量值 &#39;WL0&#39;: 60, # 初始下层张力水(mm) - 取容量值 &#39;WD0&#39;: 60 # 初始深层张力水(mm) - 取容量值 } # 汇流参数 unit_hydrograph = [0, 40, 80, 130, 100, 80, 48, 20, 10, 5, 0] # 单位线(m&sup3;/s) CG = 0.968 # 地下径流出流系数 Qg0 = 55.3 # 初始地下径流(m&sup3;/s) # ====================== 新安江模型核心类 ====================== class XinanjiangModel: def __init__(self, params): """初始化模型参数""" self.WM = params[&#39;WM&#39;] self.WUM = params[&#39;WUM&#39;] self.WLM = params[&#39;WLM&#39;] self.WDM = params[&#39;WDM&#39;] self.b = params[&#39;b&#39;] self.c = params[&#39;c&#39;] self.Kc = params[&#39;Kc&#39;] self.fc = params[&#39;fc&#39;] # 初始化土壤含水量 self.WU = params[&#39;WU0&#39;] self.WL = params[&#39;WL0&#39;] self.WD = params[&#39;WD0&#39;] def evapotranspiration(self, P, E0): """三层蒸发计算""" Ep = E0 * self.Kc # 蒸散发能力 # 上层蒸发 EU = min(self.WU + P, Ep) # 剩余蒸发能力 E_remain = Ep - EU # 下层蒸发 if self.WL > self.c * self.WLM: EL = min(E_remain, self.WL) else: EL = min(self.c * E_remain, self.WL) # 深层蒸发 E_remain -= EL ED = min(self.c * E_remain, self.WD) # 总蒸发量 E_total = EU + EL + ED # 更新土壤含水量 self.WU = max(0, self.WU + P - EU) self.WL = max(0, self.WL - EL) self.WD = max(0, self.WD - ED) return E_total def runoff_generation(self, P, E0): """产流计算""" # 计算蒸发 E = self.evapotranspiration(P, E0) PE = P - E if PE <= 0: return 0.0, 0.0, 0.0 # 无产流 # 当前土壤总含水量 W = self.WU + self.WL + self.WD # 张力水蓄水容量曲线计算 WMM = self.WM * (1 + self.b) A = WMM * (1 - (1 - min(W / self.WM, 1.0)) ** (1 / (1 + self.b))) # 产流量计算 if PE + A < WMM: R = PE - (self.WM - W) + self.WM * (1 - (A + PE) / WMM) ** (1 + self.b) else: R = PE - (self.WM - W) R = max(R, 0) # 确保产流不为负 # 更新土壤含水量 W_new = min(W + PE - R, self.WM) self.WU = min(W_new * self.WUM / self.WM, self.WUM) self.WL = min(W_new * self.WLM / self.WM, self.WLM) self.WD = min(W_new - self.WU - self.WL, self.WDM) # 分水源计算 if PE > self.fc: RG = min(R, self.fc) # 地下径流 RD = R - RG # 直接径流 else: RG = R RD = 0.0 return R, RD, RG # ====================== 数据准备 ====================== # 创建DataFrame data = { &#39;T&#39;: pd.to_datetime([ &#39;2004-9-23 12:00&#39;, &#39;2004-9-23 15:00&#39;, &#39;2004-9-23 18:00&#39;, &#39;2004-9-23 21:00&#39;, &#39;2004-9-24 00:00&#39;, &#39;2004-9-24 03:00&#39;, &#39;2004-9-24 06:00&#39;, &#39;2004-9-24 09:00&#39;, &#39;2004-9-24 12:00&#39;, &#39;2004-9-24 15:00&#39;, &#39;2004-9-24 18:00&#39;, &#39;2004-9-24 21:00&#39;, &#39;2004-9-25 00:00&#39;, &#39;2004-9-25 03:00&#39;, &#39;2004-9-25 06:00&#39;, &#39;2004-9-25 09:00&#39;, &#39;2004-9-25 12:00&#39;, &#39;2004-9-25 15:00&#39;, &#39;2004-9-25 18:00&#39;, &#39;2004-9-25 21:00&#39;, &#39;2004-9-26 00:00&#39;, &#39;2004-9-26 03:00&#39;, &#39;2004-9-26 06:00&#39;, &#39;2004-9-26 09:00&#39;, &#39;2004-9-26 12:00&#39;, &#39;2004-9-26 15:00&#39;, &#39;2004-9-26 18:00&#39;, &#39;2004-9-26 21:00&#39; ]), &#39;E&#39;: [1.3, 1.3, 1.3, 1.3, 1.2, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.8, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.2, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2], &#39;P1&#39;: [6.2, 7.6, 6.2, 8.8, 25, 29.9, 38.6, 6.9, 28.3, 25.6, 93.9, 85.3, 51.5, 39.8, 43.2, 20.5, 10.5, 7.4, 1.8, 0.2, 0, 0, 0, 0, 0, 0, 0, 0], &#39;P2&#39;: [9.9, 16, 6.4, 17.2, 34.8, 29.2, 24.8, 7.5, 29.9, 42.7, 137.6, 90.8, 47.7, 70.3, 47.3, 13.3, 8, 8.4, 2.8, 0, 0, 0, 0, 0, 0, 0, 0, 0], &#39;P3&#39;: [21.6, 20.6, 14.9, 29.4, 35.3, 43.9, 46.9, 6.1, 34.2, 39.8, 124, 85, 49.2, 42.1, 61.5, 15.8, 1.8, 7.6, 2.1, 0.3, 0, 0, 0, 0, 0, 0, 0, 0], &#39;P4&#39;: [17.3, 12.6, 15.9, 18.5, 24.6, 37.8, 33, 12.3, 28.5, 75.4, 13.2, 75.9, 38.5, 97.7, 45.9, 13.1, 3.3, 10.9, 4.6, 0, 0, 0, 0, 0, 0, 0, 0, 0] } df = pd.DataFrame(data) # 权重系数 weights = [0.33, 0.14, 0.33, 0.20] # 计算面平均雨量 df[&#39;P_avg&#39;] = df[[&#39;P1&#39;, &#39;P2&#39;, &#39;P3&#39;, &#39;P4&#39;]].dot(weights) # ====================== 产流计算 ====================== # 初始化模型 model = XinanjiangModel(params) # 存储结果 df[&#39;R&#39;] = 0.0 # 总径流(mm) df[&#39;RD&#39;] = 0.0 # 直接径流(mm) df[&#39;RG&#39;] = 0.0 # 地下径流(mm) # 逐时段计算产流 for i in range(len(df)): P = df.loc[i, &#39;P_avg&#39;] E0_val = df.loc[i, &#39;E&#39;] R, RD, RG = model.runoff_generation(P, E0_val) df.loc[i, &#39;R&#39;] = R df.loc[i, &#39;RD&#39;] = RD df.loc[i, &#39;RG&#39;] = RG # ====================== 汇流计算 ====================== # 单位转换系数 (mm/3h → m&sup3;/s) # 公式: 流量(m&sup3;/s) = 径流深(mm) * 流域面积(km²) / (3.6 * 时段小时数) conversion_factor = AREA / (3.6 * DT) # 1. 直接径流汇流 (单位线法) # 将径流深转换为单位线倍比 RD_converted = df[&#39;RD&#39;].values * conversion_factor / 10 # 单位线为10mm单位线 # 卷积计算 direct_flow = np.convolve(RD_converted, unit_hydrograph, mode=&#39;full&#39;)[:len(df)] # 2. 地下径流汇流 (线性水库法) # 将径流深转换为流量 RG_converted = df[&#39;RG&#39;].values * conversion_factor # 线性水库演算 groundwater_flow = np.zeros(len(df)) groundwater_flow[0] = Qg0 # 初始值 for i in range(1, len(df)): groundwater_flow[i] = CG * groundwater_flow[i - 1] + (1 - CG) * RG_converted[i] # 3. 总流量过程 total_flow = direct_flow + groundwater_flow # ====================== 结果可视化 ====================== plt.figure(figsize=(14, 10)) # 1. 降雨过程 plt.subplot(3, 1, 1) plt.bar(df[&#39;T&#39;], df[&#39;P_avg&#39;], width=0.02, color=&#39;blue&#39;) plt.title(&#39;流域平均降雨过程 (3小时雨量)&#39;) plt.ylabel(&#39;降雨量 (mm)&#39;) plt.grid(True, linestyle=&#39;--&#39;, alpha=0.7) plt.xticks(rotation=45) # 2. 径流组分 plt.subplot(3, 1, 2) plt.plot(df[&#39;T&#39;], df[&#39;R&#39;], &#39;k-&#39;, label=&#39;总径流(R)&#39;) plt.plot(df[&#39;T&#39;], df[&#39;RD&#39;], &#39;r--&#39;, label=&#39;直接径流(RD)&#39;) plt.plot(df[&#39;T&#39;], df[&#39;RG&#39;], &#39;b-.&#39;, label=&#39;地下径流(RG)&#39;) plt.title(&#39;径流组分过程&#39;) plt.ylabel(&#39;径流量 (mm)&#39;) plt.legend() plt.grid(True, linestyle=&#39;--&#39;, alpha=0.7) plt.xticks(rotation=45) # 3. 流量过程 plt.subplot(3, 1, 3) plt.plot(df[&#39;T&#39;], total_flow, &#39;k-&#39;, linewidth=2, label=&#39;总流量&#39;) plt.plot(df[&#39;T&#39;], direct_flow, &#39;r--&#39;, label=&#39;直接径流&#39;) plt.plot(df[&#39;T&#39;], groundwater_flow, &#39;b-.&#39;, label=&#39;地下径流&#39;) plt.title(&#39;流量过程线&#39;) plt.xlabel(&#39;时间&#39;) plt.ylabel(&#39;流量 (m&sup3;/s)&#39;) plt.legend() plt.grid(True, linestyle=&#39;--&#39;, alpha=0.7) plt.xticks(rotation=45) plt.tight_layout() plt.savefig(&#39;hydrograph_analysis.png&#39;, dpi=300) plt.show() # ====================== 结果保存 ====================== # 添加流量结果到DataFrame df[&#39;Direct_Flow&#39;] = direct_flow df[&#39;Groundwater_Flow&#39;] = groundwater_flow df[&#39;Total_Flow&#39;] = total_flow # 保存结果 df.to_excel(r&#39;C:\Users\80401\Desktop\hydrological_simulation_results.xlsx&#39;, index=False) print("模拟结果已保存到 &#39;hydrological_simulation_results.xlsx&#39;")改进代码,要求不使用scipy库
06-25
### 如何分析指定路径的PCRD文件并准备GraphPad Prism分析 以下是针对您指定的文件路径 `E:\2025.9.6\2\admin_2025-09-06 11-25-08_BR005314.pcrd` 的完整解决方案: #### 1. 完整解决方案脚本 将以下脚本保存为 `pcrd_to_prism.py`: ```python import os import struct import pandas as pd import numpy as np import matplotlib.pyplot as plt from datetime import datetime import argparse def parse_pcrd_file(file_path): """解析Bio-Rad PCRD二进制文件""" # PCRD文件头结构定义 HEADER_FORMAT = &#39;<4sHHIIIIIHHHHHHHH&#39; HEADER_SIZE = struct.calcsize(HEADER_FORMAT) well_data = [] try: with open(file_path, &#39;rb&#39;) as f: # 读取文件头 header = struct.unpack(HEADER_FORMAT, f.read(HEADER_SIZE)) file_type = header[0].decode(&#39;ascii&#39;).strip(&#39;\x00&#39;) if file_type != &#39;PCRD&#39;: raise ValueError(f"无效的PCRD文件格式,检测到: {file_type}") # 读取孔位数据 well_format = &#39;<64s64s64s64s64s64s64s64s64s64s64s64s64s64s64s64s&#39; well_size = struct.calcsize(well_format) while True: chunk = f.read(well_size) if not chunk: break # 解包孔位数据 well_info = struct.unpack(well_format, chunk) # 提取孔位信息 well_id = well_info[0].decode(&#39;utf-8&#39;, errors=&#39;ignore&#39;).strip(&#39;\x00&#39;) sample_name = well_info[1].decode(&#39;utf-8&#39;, errors=&#39;ignore&#39;).strip(&#39;\x00&#39;) target_name = well_info[2].decode(&#39;utf-8&#39;, errors=&#39;ignore&#39;).strip(&#39;\x00&#39;) task_name = well_info[3].decode(&#39;utf-8&#39;, errors=&#39;ignore&#39;).strip(&#39;\x00&#39;) # 提取Ct值 ct_value = well_info[12].decode(&#39;utf-8&#39;, errors=&#39;ignore&#39;).strip(&#39;\x00&#39;) try: ct = float(ct_value) if ct_value != &#39;&#39; else np.nan except ValueError: ct = np.nan well_data.append({ &#39;Well&#39;: well_id, &#39;Sample&#39;: sample_name, &#39;Gene&#39;: target_name, &#39;Task&#39;: task_name, &#39;Ct&#39;: ct }) df = pd.DataFrame(well_data).dropna(subset=[&#39;Ct&#39;]) # 验证数据质量 validate_data(df) return df except Exception as e: print(f"解析PCRD文件时出错: {str(e)}") return None def validate_data(df): """验证PCRD数据质量""" print("\n数据质量验证:") # 检查缺失值 missing_ct = df[&#39;Ct&#39;].isna().sum() if missing_ct > 0: print(f"警告: 发现 {missing_ct} 个缺失的Ct值") # 检查参考基因存在性 if not any(df[&#39;Gene&#39;].str.contains(&#39;GAPDH|ACTB|B2M|HPRT&#39;, case=False)): print("警告: 未检测到常见参考基因(GAPDH, ACTB等)") # 检查样品分组 samples = df[&#39;Sample&#39;].unique() if len(samples) < 2: print("警告: 样品分组少于2组,无法进行组间比较") # 计算技术重复一致性 for (sample, gene), group in df.groupby([&#39;Sample&#39;, &#39;Gene&#39;]): if len(group) > 1: # 有技术重复 cv = group[&#39;Ct&#39;].std() / group[&#39;Ct&#39;].mean() * 100 if cv > 5: print(f"警告: {sample}-{gene}的技术重复CV过高: {cv:.2f}% (应<5%)") print("数据验证完成\n") def calculate_delta_ct(df, reference_gene=&#39;GAPDH&#39;): """计算ΔCt值""" results = [] # 按样品分组处理 for sample, sample_df in df.groupby(&#39;Sample&#39;): # 查找参考基因 ref_df = sample_df[sample_df[&#39;Gene&#39;].str.contains(reference_gene, case=False)] if ref_df.empty: print(f"警告: 样本 {sample} 中未找到参考基因 {reference_gene}") continue # 计算参考基因平均Ct值 ref_ct = ref_df[&#39;Ct&#39;].mean() # 处理目标基因 for gene, gene_df in sample_df.groupby(&#39;Gene&#39;): if reference_gene.lower() in gene.lower(): continue # 跳过参考基因 # 计算目标基因平均Ct值 gene_ct = gene_df[&#39;Ct&#39;].mean() delta_ct = gene_ct - ref_ct results.append({ &#39;Sample&#39;: sample, &#39;Group&#39;: sample.split(&#39;_&#39;)[0] if &#39;_&#39; in sample else sample, &#39;Gene&#39;: gene, &#39;Ct&#39;: gene_ct, &#39;Ref Ct&#39;: ref_ct, &#39;ΔCt&#39;: delta_ct }) return pd.DataFrame(results) def calculate_fold_change(delta_ct_df, control_group=&#39;Control&#39;): """计算ΔΔCt和相对表达量""" # 创建结果容器 results = [] # 计算各组平均值 group_avg = delta_ct_df.groupby([&#39;Group&#39;, &#39;Gene&#39;])[&#39;ΔCt&#39;].mean().reset_index() # 计算对照组平均ΔCt control_avg = {} for gene, gene_df in group_avg[group_avg[&#39;Group&#39;] == control_group].groupby(&#39;Gene&#39;): control_avg[gene] = gene_df[&#39;ΔCt&#39;].mean() # 计算每个样品的相对表达量 for _, row in delta_ct_df.iterrows(): gene = row[&#39;Gene&#39;] if gene not in control_avg: print(f"警告: 基因 {gene} 在对照组中未找到,无法计算相对表达量") continue delta_delta_ct = row[&#39;ΔCt&#39;] - control_avg[gene] fold_change = 2 ** (-delta_delta_ct) results.append({ &#39;Sample&#39;: row[&#39;Sample&#39;], &#39;Group&#39;: row[&#39;Group&#39;], &#39;Gene&#39;: gene, &#39;Fold Change&#39;: fold_change, &#39;ΔΔCt&#39;: delta_delta_ct, &#39;ΔCt&#39;: row[&#39;ΔCt&#39;], &#39;Ct&#39;: row[&#39;Ct&#39;], &#39;Ref Ct&#39;: row[&#39;Ref Ct&#39;] }) return pd.DataFrame(results) def export_prism_data(results_df, output_dir): """导出Prism格式数据""" # 创建Prism格式数据 prism_data = results_df.pivot_table( index=[&#39;Sample&#39;, &#39;Group&#39;], columns=&#39;Gene&#39;, values=&#39;Fold Change&#39; ).reset_index() # 创建输出路径 timestamp = datetime.now().strftime(&#39;%Y%m%d_%H%M%S&#39;) output_csv = os.path.join(output_dir, f"prism_qpcr_{timestamp}.csv") # 保存数据 prism_data.to_csv(output_csv, index=False) print(f"Prism格式数据已保存至: {output_csv}") return output_csv def generate_quality_plot(df, output_dir): """生成数据质量图表""" # 创建图表 plt.figure(figsize=(14, 8)) # Ct值分布 plt.subplot(2, 2, 1) plt.hist(df[&#39;Ct&#39;], bins=20, color=&#39;skyblue&#39;, edgecolor=&#39;black&#39;) plt.title(&#39;Ct Value Distribution&#39;) plt.xlabel(&#39;Ct Value&#39;) plt.ylabel(&#39;Frequency&#39;) plt.axvline(x=35, color=&#39;r&#39;, linestyle=&#39;--&#39;, label=&#39;Ct=35 (Detection Limit)&#39;) plt.legend() # 孔位热图 plt.subplot(2, 2, 2) plate_data = df.copy() plate_data[&#39;Row&#39;] = plate_data[&#39;Well&#39;].str[0] plate_data[&#39;Column&#39;] = plate_data[&#39;Well&#39;].str[1:].astype(int) # 创建384孔板布局 (16行 × 24列) plate_layout = pd.DataFrame(index=list(&#39;ABCDEFGHIJKLMNOP&#39;), columns=range(1, 25)) for _, row in plate_data.iterrows(): plate_layout.loc[row[&#39;Row&#39;], row[&#39;Column&#39;]] = row[&#39;Ct&#39;] plt.imshow(plate_layout.fillna(0).astype(float), cmap=&#39;viridis_r&#39;, aspect=&#39;auto&#39;) plt.title(&#39;Plate Layout Heatmap&#39;) plt.xlabel(&#39;Column&#39;) plt.ylabel(&#39;Row&#39;) plt.colorbar(label=&#39;Ct Value&#39;) # 技术重复一致性 plt.subplot(2, 1, 2) for (sample, gene), group in df.groupby([&#39;Sample&#39;, &#39;Gene&#39;]): if len(group) > 1: # 有技术重复 plt.scatter([gene]*len(group), group[&#39;Ct&#39;], label=f"{sample}-{gene}") plt.title(&#39;Technical Replicates Consistency&#39;) plt.xlabel(&#39;Gene&#39;) plt.ylabel(&#39;Ct Value&#39;) plt.xticks(rotation=45) plt.tight_layout() # 保存图表 quality_plot = os.path.join(output_dir, f"quality_control_{timestamp}.png") plt.savefig(quality_plot, dpi=300) print(f"数据质量图表已保存至: {quality_plot}") return quality_plot def analyze_pcrd_file(file_path, output_dir=None, reference_gene=&#39;GAPDH&#39;, control_group=&#39;Control&#39;): """完整分析PCRD文件流程""" try: # 设置输出目录 if output_dir is None: output_dir = os.path.dirname(file_path) print(f"开始分析PCRD文件: {file_path}") print(f"输出目录: {output_dir}") # 1. 解析PCRD文件 raw_data = parse_pcrd_file(file_path) if raw_data is None or raw_data.empty: print("解析失败或未找到有效数据") return None print(f"\n成功解析 {len(raw_data)} 个数据点") print("基因列表:", &#39;, &#39;.join(raw_data[&#39;Gene&#39;].unique())) # 2. 计算ΔCt值 delta_ct_data = calculate_delta_ct(raw_data, reference_gene) if delta_ct_data.empty: print("ΔCt计算失败") return None print(f"\nΔCt计算完成,包含 {len(delta_ct_data)} 个样本-基因组合") # 3. 计算相对表达量 results = calculate_fold_change(delta_ct_data, control_group) if results.empty: print("相对表达量计算失败") return None print(f"\n相对表达量计算完成,包含 {len(results)} 个结果") # 4. 导出Prism格式数据 prism_csv = export_prism_data(results, output_dir) # 5. 生成数据质量图表 quality_plot = generate_quality_plot(raw_data, output_dir) # 6. 汇总报告 report = f""" ===== qPCR分析报告 ===== 文件: {os.path.basename(file_path)} 分析时间: {datetime.now().strftime(&#39;%Y-%m-%d %H:%M:%S&#39;)} 参考基因: {reference_gene} 对照组: {control_group} 数据统计: - 总孔位: {len(raw_data)} - 样品数量: {len(raw_data[&#39;Sample&#39;].unique())} - 基因数量: {len(raw_data[&#39;Gene&#39;].unique())} - 分析结果: {len(results)} 个样本-基因组合 输出文件: - Prism数据: {prism_csv} - 质控图表: {quality_plot} 分析完成! """ print(report) # 保存结果数据 results_file = os.path.join(output_dir, f"full_results_{timestamp}.xlsx") with pd.ExcelWriter(results_file) as writer: raw_data.to_excel(writer, sheet_name=&#39;Raw Data&#39;, index=False) delta_ct_data.to_excel(writer, sheet_name=&#39;Delta Ct&#39;, index=False) results.to_excel(writer, sheet_name=&#39;Results&#39;, index=False) print(f"完整结果已保存至: {results_file}") return results except Exception as e: print(f"分析过程中发生严重错误: {str(e)}") return None # 全局时间戳 timestamp = datetime.now().strftime(&#39;%Y%m%d_%H%M%S&#39;) if __name__ == "__main__": # 设置命令行参数 parser = argparse.ArgumentParser(description=&#39;PCRD文件分析工具&#39;) parser.add_argument(&#39;file&#39;, type=str, help=&#39;PCRD文件路径&#39;) parser.add_argument(&#39;--output&#39;, type=str, help=&#39;输出目录&#39;) parser.add_argument(&#39;--ref&#39;, type=str, default=&#39;GAPDH&#39;, help=&#39;参考基因名称&#39;) parser.add_argument(&#39;--control&#39;, type=str, default=&#39;Control&#39;, help=&#39;对照组名称&#39;) args = parser.parse_args() # 确保输出目录存在 output_dir = args.output if args.output else os.path.dirname(args.file) os.makedirs(output_dir, exist_ok=True) # 运行分析 results = analyze_pcrd_file( file_path=args.file, output_dir=output_dir, reference_gene=args.ref, control_group=args.control ) if results is not None: print("\n分析成功完成! 请导入生成的CSV文件到GraphPad Prism进行进一步分析") ``` #### 2. 针对您的文件路径的执行步骤 1. **保存脚本**: - 将上述代码保存为 `pcrd_to_prism.py` - 保存到方便的位置,例如 `C:\qpcr_analysis\pcrd_to_prism.py` 2. **安装依赖库**(如果尚未安装): ```cmd pip install pandas numpy matplotlib openpyxl ``` 3. **运行分析脚本**: 在命令提示符(cmd)中执行: ```cmd python C:\qpcr_analysis\pcrd_to_prism.py "E:\2025.9.6\2\admin_2025-09-06 11-25-08_BR005314.pcrd" --ref GAPDH --control Control ``` 或者,如果您想指定输出目录: ```cmd python C:\qpcr_analysis\pcrd_to_prism.py "E:\2025.9.6\2\admin_2025-09-06 11-25-08_BR005314.pcrd" --output "E:\2025.9.6\analysis_results" --ref GAPDH --control Control ``` #### 3. 输出文件说明 脚本将在同一目录或指定输出目录生成以下文件: 1. **Prism格式数据文件**: - 文件名:`prism_qpcr_YYYYMMDD_HHMMSS.csv` - 格式:适合直接导入GraphPad Prism进行统计分析和作图 - 内容示例: ```csv Sample,Group,Gene1,Gene2,Gene3 Control_1,Control,1.0,1.0,1.0 Control_2,Control,1.1,0.95,1.05 Treatment_1,Treatment,2.5,0.8,3.2 Treatment_2,Treatment,2.7,0.75,3.5 ``` 2. **数据质量报告**: - 文件名:`quality_control_YYYYMMDD_HHMMSS.png` - 内容:包含Ct值分布、孔位热图和技术重复一致性的图表 3. **完整结果Excel文件**: - 文件名:`full_results_YYYYMMDD_HHMMSS.xlsx` - 内容: - Raw Data: 原始解析数据 - Delta Ct: ΔCt计算结果 - Results: 最终分析结果(Fold Change等) #### 4. GraphPad Prism导入指南 1. **打开Prism**: - 启动GraphPad Prism(推荐版本9或10) - 创建新项目 → 选择"Column"图表类型 2. **导入数据**: - 点击"Import" → 选择生成的CSV文件 - 在导入对话框设置: - Data organization: Column titles - Column titles: Read from file - Row titles: Read from first column 3. **统计分析**: - 转到"Analyze"选项卡 - 选择"Column analyses" → "One-way ANOVA" - 配置参数: - 实验设计:选择"Ordinary one-way ANOVA" - 多重比较:选择"Compare selected pairs"或"Compare all pairs" - 校正方法:建议选择"Tukey"或"Sidak" 4. **创建出版级图表**: - 转到"Graphs"部分 - 双击图表进行自定义: - Appearance: 自定义颜色、柱状图间距 - Data Sets: 设置误差线为SEM - Add: 添加统计显著性标记(*, **, ***) - 导出:File → Export → 选择PNG/TIFF格式,设置dpi=300 #### 5. 处理特殊情况的建议 1. **如果参考基因不匹配**: - 列出文件中检测到的基因: ```python print("检测到的基因:", df[&#39;Gene&#39;].unique()) ``` - 重新运行脚本指定正确的参考基因: ```cmd python pcrd_to_prism.py "E:\... .pcrd" --ref ACTB --control Control ``` 2. **如果对照组名称不匹配**: - 检查样本名称前缀(如Control、CTRL、Untreated) - 重新运行脚本指定正确的对照组: ```cmd python pcrd_to_prism.py "E:\... .pcrd" --
09-07
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值