【转载一】判断两个链表是否相交问题详解
有一个单链表,其中 可能有一个环,也就是某个节点的next指向的是链表中在它之前的节点,这样在链表的尾部形成一环。
问题:
1、如何判断 一个链表是不是这类链表?
2、如果链表为存在环,如果找到环的入口点?
解答:
一、判断链表是否存在环,办法为:
设 置两个指针(fast, slow),初始值都指向头,slow每次前进一步,fast每次前进二步,如果链表存在环,则fast必定先进入环,而slow后进入环,两个指针必定 相遇。(当然,fast先行头到尾部为NULL,则为无环链表)程序如下:
- bool IsExitsLoop(slist *head)
- {
- slist *slow = head, *fast = head;
- while ( fast && fast->next )
- {
- slow = slow->next;
- fast = fast->next->next;
- if ( slow == fast ) break;
- }
- return !(fast == NULL || fast->next == NULL);
- }
二、找到环的入口点
当fast若与slow相遇时,slow肯定没有走遍历完链表,而fast已经在环内循环了n圈 (1<=n)。假设slow走了s步,则fast走了2s步(fast步数还等于s 加上在环上多转的n圈),设环长为r,则:
2s = s + nr
s= nr
设整个链表长L,入口环与相遇点距离为x,起点到环入口点的距离为a。
a + x = nr
a + x = (n – 1)r +r = (n-1)r + L - a
a = (n-1)r + (L – a – x)
(L – a – x)为相遇点到环入口点的距离,由此可知,从链表头到环入口点等于(n-1)循环内环+相遇点到环入口点,于是我们从链表头、与相遇点分别设一个指针,每 次各走一步,两个指针必定相遇,且相遇第一点为环入口点。程序描述如下:
- slist* FindLoopPort(slist *head)
- {
- slist *slow = head, *fast = head;
- while ( fast && fast->next )
- {
- slow = slow->next;
- fast = fast->next->next;
- if ( slow == fast ) break;
- }
- if (fast == NULL || fast->next == NULL)
- return NULL;
- slow = head;
- while (slow != fast)
- {
- slow = slow->next;
- fast = fast->next;
- }
- return slow;
- }
扩展问题:
判断两个单链表是否相交,如果相交,给出相交的第一个点(两个链表都不存在环)。
比较好的方 法有两个:
一、将其中一个链表首尾相连,检测另外一个链表是否存在环,如果存在,则两个链表相交,而检测出来的依赖环入口即为相交的第一 个点。
二、如果两个链表相交,那个两个链表从相交点到链表结束都是相同的节点,我们可以先遍历一个链表,直到尾部,再遍历另外一个链表, 如果也可以走到同样的结尾点,则两个链表相交。
这时我们记下两个链表length,再遍历一次,长链表节点先出发前进 (lengthMax-lengthMin)步,之后两个链表同时前进,每次一步,相遇的第一点即为两个链表相交的第一个点。
【转载二】一道不错的算法题-判断链表是否有环
这是之前朋友出的一道题目,感觉不错,就拿来分享一下。
问题如下:
一个单向链表,怎么判断他是 否存在环?
对于最简单的做法就是:
用一个指针走一圈,如果重复遇到其他任何一个指针,则证明有环。
但是这样做的问题就是:
单指针需要留下脚印,会弄脏链表数据,而如果不能脏数据的话,就需要增加一个容器,并且增加查找的开销。
有没有更好的方法呢?有的,定义一对快慢指针分别为ptr_fast,ptr_slow,ptr_slow走一 步,ptr_fast走两步,如果ptr_slow和ptr_fast最终能相遇,那么证明有环。
解释如下:
设步长分别为x和y,链表回环结点数为n,非环回环为m
设经过t次跨步,则只要xt和yt对n同余并且xt和yt都大于m就可以相 遇(假设x>y)
xt-yt=pn
yt>m
得到:
t=pn/(x-y) > m/y(只需pn可整除(x-y))
指针移动次数为(x+y)t=(x+y)/(x-y)*pn
而要想pn永远整除(x-y),那么x-y=1即可。在x-y固定为1的情况下x+y越小,则移动次数越少,也即指针比较次数越少,所以x为2,y 为1。
其实还有第二个问题,即,假设ptr_fast在ptr_slow走完一圈前相遇,那环的长度和链表的长度分别为多少。(注意:以 下方法是有问题的,如果ab足够长的话,那可能是在好几圈之后相遇的)
我们根据第一个问题的结论,假设ptr_fast和ptr_slow在c点相遇。
假设x是速度,t是时间。
则对 ptr_slow:
ab+bc = x * t
对ptr_fast:
ab+bc+cb+bc = 2x*t
所以得出:
cb + bc = ab + bc
即:
cb = ab
所以环的长度就求出来了,即bc+cb = bc + ab = ptr_slow走的路程。
那链表的长度呢?
现在已经有了ab+bc的长度,只需要知道ab或者cb的长度即可:
再创建一 个指针ptr_new,让ptr_new从head开始,和ptr_slow同时开始走,都是每次一步,由于ab == cb,所以他们相交的地方就是b点。所以即可得到整个链表的长度。
如果不是在慢指针走一圈内相遇,我还没有想到有算出环的长度和链表长度的方法,大家如果有答案欢迎告知~~
转载于:https://blog.51cto.com/iluohzij/434165