Codeforces Round #428 (Div. 2) C. dfs

本文介绍了一种计算在特定条件下旅行路径长度数学期望的算法。该算法基于深度优先搜索(DFS),通过递归方式遍历所有可能路径并计算概率加权平均距离。适用于n个城市组成的连通图中,每个城市仅能访问一次的情况。
C. Journey
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.

Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.

Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link https://en.wikipedia.org/wiki/Expected_value.

Input

The first line contains a single integer n (1 ≤ n ≤ 100000) — number of cities.

Then n - 1 lines follow. The i-th line of these lines contains two integers ui and vi (1 ≤ ui, vi ≤ nui ≠ vi) — the cities connected by the i-th road.

It is guaranteed that one can reach any city from any other by the roads.

Output

Print a number — the expected length of their journey. The journey starts in the city 1.

Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Examples
input
Copy
4
1 2
1 3
2 4
output
1.500000000000000
input
Copy
5
1 2
1 3
3 4
2 5
output
2.000000000000000
Note

In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.

In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.

题意:n个点,n-1条边,每个点不能重复走,求走的路长度的数学期望。

思路:E(x)=l[i]*p[i](每条路的长度*这条路的概率)。

代码:

 1 //#include"bits/stdc++.h"
 2 #include <sstream>
 3 #include <iomanip>
 4 #include"cstdio"
 5 #include"map"
 6 #include"set"
 7 #include"cmath"
 8 #include"queue"
 9 #include"vector"
10 #include"string"
11 #include"cstring"
12 #include"time.h"
13 #include"iostream"
14 #include"stdlib.h"
15 #include"algorithm"
16 #define db double
17 #define ll long long
18 #define vec vector<ll>
19 #define mt  vector<vec>
20 #define ci(x) scanf("%d",&x)
21 #define cd(x) scanf("%lf",&x)
22 #define cl(x) scanf("%lld",&x)
23 #define pi(x) printf("%d\n",x)
24 #define pd(x) printf("%f\n",x)
25 #define pl(x) printf("%lld\n",x)
26 //#define rep(i, x, y) for(int i=x;i<=y;i++)
27 #define rep(i,n) for(int i=0;i<n;i++)
28 const int N   = 1e6 + 5;
29 const int mod = 1e9 + 7;
30 const int MOD = mod - 1;
31 const int inf = 0x3f3f3f3f;
32 const db  PI  = acos(-1.0);
33 const db  eps = 1e-10;
34 using namespace std;
35 vector<int> g[N];
36 bool v[N];
37 int n;
38 db ans=0;
39 void dfs(int u,ll s,db p)
40 {
41     v[u]=1;
42     db cnt=0;
43     for(int i=0;i<g[u].size();i++) if(!v[g[u][i]]) cnt++;
44     for(int i=0;i<g[u].size();i++){
45         int x=g[u][i];
46         if(!v[x]) v[x]=1,dfs(x,s+1,p/cnt),v[x]=0;
47     }
48     if(g[u].size()==1&&v[g[u][0]]==1) ans+=s*p;
49 }
50 int main()
51 {
52     ci(n);
53     for(int i=1;i<n;i++){
54         int x,y;
55         ci(x),ci(y);
56         g[x].push_back(y);
57         g[y].push_back(x);
58     }
59     dfs(1,0,1.0);
60     pd(ans);
61     return 0;
62 }

 

 

转载于:https://www.cnblogs.com/mj-liylho/p/8650259.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值