‘CONFIG_ENV_SIZE’未声明(不在函数内【转】

本文介绍了一种可以暂时解决问题的修复方法,适用于特定的技术场景。
当前我这边的env/nand.c中只有: struct nand_env_location { const char *name; const nand_erase_options_t erase_opts; }; static int erase_and_write_env(const struct nand_env_location *location, u_char *env_new) { struct mtd_info *mtd; int ret = 0; mtd = get_nand_dev_by_index(0); if (!mtd) return 1; printf("Erasing %s...\n", location->name); if (nand_erase_opts(mtd, &location->erase_opts)) return 1; printf("Writing to %s... ", location->name); ret = writeenv(location->erase_opts.offset, env_new); puts(ret ? "FAILED!\n" : "OK\n"); return ret; } static int env_nand_save(void) { int ret = 0; ALLOC_CACHE_ALIGN_BUFFER(env_t, env_new, 1); int env_idx = 0; static const struct nand_env_location location[] = { { .name = "NAND", .erase_opts = { .length = CONFIG_ENV_RANGE, .offset = CONFIG_ENV_OFFSET, }, }, #ifdef CONFIG_ENV_OFFSET_REDUND { .name = "redundant NAND", .erase_opts = { .length = CONFIG_ENV_RANGE, .offset = CONFIG_ENV_OFFSET_REDUND, }, }, #endif }; if (CONFIG_ENV_RANGE < CONFIG_ENV_SIZE) return 1; ret = env_export(env_new); if (ret) return ret; #ifdef CONFIG_ENV_OFFSET_REDUND env_idx = (gd->env_valid == ENV_VALID); #endif ret = erase_and_write_env(&location[env_idx], (u_char *)env_new); #ifdef CONFIG_ENV_OFFSET_REDUND if (!ret) { /* preset other copy for next write */ gd->env_valid = gd->env_valid == ENV_REDUND ? ENV_VALID : ENV_REDUND; return ret; } env_idx = (env_idx + 1) & 1; ret = erase_and_write_env(&location[env_idx], (u_char *)env_new); if (!ret) printf("Warning: primary env write failed," " redundancy is lost!\n"); #endif return ret; } #endif /* CMD_SAVEENV */ #if defined(CONFIG_SPL_BUILD) static int readenv(size_t offset, u_char *buf) { return nand_spl_load_image(offset, CONFIG_ENV_SIZE, buf); } #else static int readenv(size_t offset, u_char *buf) { size_t end = offset + CONFIG_ENV_RANGE; size_t amount_loaded = 0; size_t blocksize, len; struct mtd_info *mtd; u_char *char_ptr; mtd = get_nand_dev_by_index(0); if (!mtd) return 1; blocksize = mtd->erasesize; len = min(blocksize, (size_t)CONFIG_ENV_SIZE); while (amount_loaded < CONFIG_ENV_SIZE && offset < end) { if (nand_block_isbad(mtd, offset)) { offset += blocksize; } else { char_ptr = &buf[amount_loaded]; if (nand_read_skip_bad(mtd, offset, &len, NULL, mtd->size, char_ptr)) return 1; offset += blocksize; amount_loaded += len; } } if (amount_loaded != CONFIG_ENV_SIZE) return 1; return 0; } #endif /* #if defined(CONFIG_SPL_BUILD) */ #ifdef CONFIG_ENV_OFFSET_OOB int get_nand_env_oob(struct mtd_info *mtd, unsigned long *result) { struct mtd_oob_ops ops; uint32_t oob_buf[ENV_OFFSET_SIZE / sizeof(uint32_t)]; int ret; ops.datbuf = NULL; ops.mode = MTD_OOB_AUTO; ops.ooboffs = 0; ops.ooblen = ENV_OFFSET_SIZE; ops.oobbuf = (void *)oob_buf; ret = mtd->read_oob(mtd, ENV_OFFSET_SIZE, &ops); if (ret) { printf("error reading OOB block 0\n"); return ret; } if (oob_buf[0] == ENV_OOB_MARKER) { *result = ovoid ob_buf[1] * mtd->erasesize; } else if (oob_buf[0] == ENV_OOB_MARKER_OLD) { *result = oob_buf[1]; } else { printf("No dynamic environment marker in OOB block 0\n"); return -ENOENT; } return 0; } #endif #ifdef CONFIG_ENV_OFFSET_REDUND static int env_nand_load(void) { #if defined(ENV_IS_EMBEDDED) return 0; #else int read1_fail, read2_fail; env_t *tmp_env1, *tmp_env2; int ret = 0; tmp_env1 = (env_t *)malloc(CONFIG_ENV_SIZE); tmp_env2 = (env_t *)malloc(CONFIG_ENV_SIZE); if (tmp_env1 == NULL || tmp_env2 == NULL) { puts("Can't allocate buffers for environment\n"); env_set_default("malloc() failed", 0); ret = -EIO; goto done; } read1_fail = readenv(CONFIG_ENV_OFFSET, (u_char *) tmp_env1); read2_fail = readenv(CONFIG_ENV_OFFSET_REDUND, (u_char *) tmp_env2); ret = env_import_redund((char *)tmp_env1, read1_fail, (char *)tmp_env2, read2_fail, H_EXTERNAL); done: free(tmp_env1); free(tmp_env2); return ret; #endif /* ! ENV_IS_EMBEDDED */ } #else /* ! CONFIG_ENV_OFFSET_REDUND */ /* * The legacy NAND code saved the environment in the first NAND * device i.e., nand_dev_desc + 0. This is also the behaviour using * the new NAND code. */ static int env_nand_load(void) { #if !defined(ENV_IS_EMBEDDED) int ret; ALLOC_CACHE_ALIGN_BUFFER(char, buf, CONFIG_ENV_SIZE); #if defined(CONFIG_ENV_OFFSET_OOB) struct mtd_info *mtd = get_nand_dev_by_index(0); /* * If unable to read environment offset from NAND OOB then fall through * to the normal environment reading code below */ if (mtd && !get_nand_env_oob(mtd, &nand_env_oob_offset)) { printf("Found Environment offset in OOB..\n"); } else { env_set_default("no env offset in OOB", 0); return; } #endif ret = readenv(CONFIG_ENV_OFFSET, (u_char *)buf); if (ret) { env_set_default("readenv() failed", 0); return -EIO; } return env_import(buf, 1, H_EXTERNAL); #endif /* ! ENV_IS_EMBEDDED */ return 0; } #endif /* CONFIG_ENV_OFFSET_REDUND */ U_BOOT_ENV_LOCATION(nand) = { .location = ENVL_NAND, ENV_NAME("NAND") .load = env_nand_load, #if defined(CMD_SAVEENV) .save = env_save_ptr(env_nand_save), #endif .init = env_nand_init, };
09-03
#ifdef CMD_SAVEENV /* The legacy NAND code saved the environment in the first NAND device i.e., nand_dev_desc + 0. This is also the behaviour using the new NAND code. */ static int writeenv(size_t offset, u_char *buf) { size_t end = offset + CONFIG_ENV_RANGE; size_t amount_saved = 0; size_t blocksize, len; struct mtd_info *mtd; u_char *char_ptr; mtd = get_nand_dev_by_index(0); if (!mtd) return 1; blocksize = mtd->erasesize; len = min(blocksize, (size_t)CONFIG_ENV_SIZE); while (amount_saved < CONFIG_ENV_SIZE && offset < end) { if (nand_block_isbad(mtd, offset)) { offset += blocksize; } else { char_ptr = &buf[amount_saved]; if (nand_write(mtd, offset, &len, char_ptr)) return 1; offset += blocksize; amount_saved += len; } } if (amount_saved != CONFIG_ENV_SIZE) return 1; return 0; } struct nand_env_location { const char *name; const nand_erase_options_t erase_opts; }; static int erase_and_write_env(const struct nand_env_location *location, u_char *env_new) { struct mtd_info *mtd; int ret = 0; mtd = get_nand_dev_by_index(0); if (!mtd) return 1; printf("Erasing %s...\n", location->name); if (nand_erase_opts(mtd, &location->erase_opts)) return 1; printf("Writing to %s... ", location->name); ret = writeenv(location->erase_opts.offset, env_new); puts(ret ? "FAILED!\n" : "OK\n"); return ret; } static int env_nand_save(void) { int ret = 0; ALLOC_CACHE_ALIGN_BUFFER(env_t, env_new, 1); int env_idx = 0; static const struct nand_env_location location[] = { { .name = “NAND”, .erase_opts = { .length = CONFIG_ENV_RANGE, .offset = CONFIG_ENV_OFFSET, }, }, #ifdef CONFIG_ENV_OFFSET_REDUND { .name = “redundant NAND”, .erase_opts = { .length = CONFIG_ENV_RANGE, .offset = CONFIG_ENV_OFFSET_REDUND, }, }, #endif }; if (CONFIG_ENV_RANGE < CONFIG_ENV_SIZE) return 1; ret = env_export(env_new); if (ret) return ret; #ifdef CONFIG_ENV_OFFSET_REDUND env_idx = (gd->env_valid == ENV_VALID); #endif ret = erase_and_write_env(&location[env_idx], (u_char *)env_new); #ifdef CONFIG_ENV_OFFSET_REDUND if (!ret) { /* preset other copy for next write */ gd->env_valid = gd->env_valid == ENV_REDUND ? ENV_VALID : ENV_REDUND; return ret; } env_idx = (env_idx + 1) & 1; ret = erase_and_write_env(&location[env_idx], (u_char *)env_new); if (!ret) printf("Warning: primary env write failed," " redundancy is lost!\n"); #endif return ret; } #endif /* CMD_SAVEENV */ #if defined(CONFIG_SPL_BUILD) static int readenv(size_t offset, u_char *buf) { return nand_spl_load_image(offset, CONFIG_ENV_SIZE, buf); } #else static int readenv(size_t offset, u_char *buf) { size_t end = offset + CONFIG_ENV_RANGE; size_t amount_loaded = 0; size_t blocksize, len; struct mtd_info *mtd; u_char *char_ptr; mtd = get_nand_dev_by_index(0); if (!mtd) return 1; blocksize = mtd->erasesize; len = min(blocksize, (size_t)CONFIG_ENV_SIZE); while (amount_loaded < CONFIG_ENV_SIZE && offset < end) { if (nand_block_isbad(mtd, offset)) { offset += blocksize; } else { char_ptr = &buf[amount_loaded]; if (nand_read_skip_bad(mtd, offset, &len, NULL, mtd->size, char_ptr)) return 1; offset += blocksize; amount_loaded += len; } } if (amount_loaded != CONFIG_ENV_SIZE) return 1; return 0; } #endif /* #if defined(CONFIG_SPL_BUILD) */ #ifdef CONFIG_ENV_OFFSET_OOB int get_nand_env_oob(struct mtd_info *mtd, unsigned long *result) { struct mtd_oob_ops ops; uint32_t oob_buf[ENV_OFFSET_SIZE / sizeof(uint32_t)]; int ret; ops.datbuf = NULL; ops.mode = MTD_OOB_AUTO; ops.ooboffs = 0; ops.ooblen = ENV_OFFSET_SIZE; ops.oobbuf = (void *)oob_buf; ret = mtd->read_oob(mtd, ENV_OFFSET_SIZE, &ops); if (ret) { printf("error reading OOB block 0\n"); return ret; } if (oob_buf[0] == ENV_OOB_MARKER) { *result = ovoid ob_buf[1] * mtd->erasesize; } else if (oob_buf[0] == ENV_OOB_MARKER_OLD) { *result = oob_buf[1]; } else { printf("No dynamic environment marker in OOB block 0\n"); return -ENOENT; } return 0; } #endif #ifdef CONFIG_ENV_OFFSET_REDUND static int env_nand_load(void) { #if defined(ENV_IS_EMBEDDED) return 0; #else int read1_fail, read2_fail; env_t *tmp_env1, *tmp_env2; int ret = 0; tmp_env1 = (env_t *)malloc(CONFIG_ENV_SIZE); tmp_env2 = (env_t *)malloc(CONFIG_ENV_SIZE); if (tmp_env1 == NULL || tmp_env2 == NULL) { puts("Can't allocate buffers for environment\n"); env_set_default("malloc() failed", 0); ret = -EIO; goto done; } read1_fail = readenv(CONFIG_ENV_OFFSET, (u_char *) tmp_env1); read2_fail = readenv(CONFIG_ENV_OFFSET_REDUND, (u_char *) tmp_env2); ret = env_import_redund((char *)tmp_env1, read1_fail, (char *)tmp_env2, read2_fail, H_EXTERNAL); done: free(tmp_env1); free(tmp_env2); return ret; #endif /* ! ENV_IS_EMBEDDED / } #else / ! CONFIG_ENV_OFFSET_REDUND / / The legacy NAND code saved the environment in the first NAND device i.e., nand_dev_desc + 0. This is also the behaviour using the new NAND code. */ static int env_nand_load(void) { #if !defined(ENV_IS_EMBEDDED) int ret; ALLOC_CACHE_ALIGN_BUFFER(char, buf, CONFIG_ENV_SIZE); #if defined(CONFIG_ENV_OFFSET_OOB) struct mtd_info mtd = get_nand_dev_by_index(0); / * If unable to read environment offset from NAND OOB then fall through * to the normal environment reading code below */ if (mtd && !get_nand_env_oob(mtd, &nand_env_oob_offset)) { printf(“Found Environment offset in OOB…\n”); } else { env_set_default(“no env offset in OOB”, 0); return; } #endif ret = readenv(CONFIG_ENV_OFFSET, (u_char *)buf); if (ret) { env_set_default("readenv() failed", 0); return -EIO; } return env_import(buf, 1, H_EXTERNAL); #endif /* ! ENV_IS_EMBEDDED */ return 0; } #endif /* CONFIG_ENV_OFFSET_REDUND */ U_BOOT_ENV_LOCATION(nand) = { .location = ENVL_NAND, ENV_NAME(“NAND”) .load = env_nand_load, #if defined(CMD_SAVEENV) .save = env_save_ptr(env_nand_save), #endif .init = env_nand_init, }; 这段代码是没改过的boot源码,详细解释一下代码的功能
09-03
想实现的是boot环境变量双备份功能 我现在的代码实现是: 1、配置文件中增加:CONFIG_ENV_OFFSET_REDUND=0x1300000 CONFIG_ENV_RANGE=0x100000 CONFIG_SYS_REDUNDAND_ENVIRONMENT=y 2、在src/env/common.c中修改 void env_relocate(void) { #if defined(CONFIG_NEEDS_MANUAL_RELOC) env_reloc(); env_fix_drivers(); env_htab.change_ok += gd->reloc_off; #endif if (gd->env_valid == ENV_INVALID) { #if defined(CONFIG_ENV_IS_NOWHERE) || defined(CONFIG_SPL_BUILD) /* Environment not changable */ env_set_default(NULL, 0); #else bootstage_error(BOOTSTAGE_ID_NET_CHECKSUM); env_set_default("bad CRC", 0); #endif } else { env_load(); } } 为 void env_relocate(void) { #if defined(CONFIG_NEEDS_MANUAL_RELOC) env_reloc(); env_fix_drivers(); env_htab.change_ok += gd->reloc_off; #endif if (gd->env_valid == ENV_INVALID) { #if defined(CONFIG_ENV_IS_NOWHERE) || defined(CONFIG_SPL_BUILD) /* Environment not changable */ env_set_default(NULL, 0); #else bootstage_error(BOOTSTAGE_ID_NET_CHECKSUM); env_set_default("bad CRC", 0); #endif /* 设置默认环境后,将env_flags重置为0 */ #ifdef CONFIG_SYS_REDUNDAND_ENVIRONMENT //gd->env_valid = ENV_VALID; // 标记内存环境为有效 env_flags = 0; #endif } else { env_load(); } } 3、在src/env/nand.c文件中 static int env_nand_save(void) { int ret = 0; ALLOC_CACHE_ALIGN_BUFFER(env_t, env_new, 1); int env_idx = 0; static const struct nand_env_location location[] = { { .name = "NAND", .erase_opts = { .length = CONFIG_ENV_RANGE, .offset = CONFIG_ENV_OFFSET, }, }, #ifdef CONFIG_ENV_OFFSET_REDUND { .name = "redundant NAND", .erase_opts = { .length = CONFIG_ENV_RANGE, .offset = CONFIG_ENV_OFFSET_REDUND, }, }, #endif }; if (CONFIG_ENV_RANGE < CONFIG_ENV_SIZE) return 1; ret = env_export(env_new); if (ret) return ret; #ifdef CONFIG_ENV_OFFSET_REDUND env_idx = (gd->env_valid == ENV_VALID); #endif ret = erase_and_write_env(&location[env_idx], (u_char *)env_new); #ifdef CONFIG_ENV_OFFSET_REDUND if (!ret) { /* preset other copy for next write */ gd->env_valid = gd->env_valid == ENV_REDUND ? ENV_VALID : ENV_REDUND; return ret; } env_idx = (env_idx + 1) & 1; ret = erase_and_write_env(&location[env_idx], (u_char *)env_new); if (!ret) printf("Warning: primary env write failed," " redundancy is lost!\n"); #endif return ret; } 和 #ifdef CONFIG_ENV_OFFSET_REDUND static int env_nand_load(void) { #if defined(ENV_IS_EMBEDDED) return 0; #else int read1_fail, read2_fail; env_t *tmp_env1, *tmp_env2; int ret = 0; tmp_env1 = (env_t *)malloc(CONFIG_ENV_SIZE); tmp_env2 = (env_t *)malloc(CONFIG_ENV_SIZE); if (tmp_env1 == NULL || tmp_env2 == NULL) { puts("Can't allocate buffers for environment\n"); env_set_default("malloc() failed", 0); ret = -EIO; goto done; } read1_fail = readenv(CONFIG_ENV_OFFSET, (u_char *) tmp_env1); read2_fail = readenv(CONFIG_ENV_OFFSET_REDUND, (u_char *) tmp_env2); ret = env_import_redund((char *)tmp_env1, read1_fail, (char *)tmp_env2, read2_fail, H_EXTERNAL); done: free(tmp_env1); free(tmp_env2); return ret; #endif /* ! ENV_IS_EMBEDDED */ } 修改为: static int env_nand_save(void) { int ret = 0; ALLOC_CACHE_ALIGN_BUFFER(env_t, env_new, 1); int env_idx = 0; static const struct nand_env_location location[] = { { .name = "env_main", .erase_opts = { .length = CONFIG_ENV_RANGE, .offset = CONFIG_ENV_OFFSET, }, }, #ifdef CONFIG_ENV_OFFSET_REDUND { .name = "env_backup", .erase_opts = { .length = CONFIG_ENV_RANGE, .offset = CONFIG_ENV_OFFSET_REDUND, }, }, #endif }; if (CONFIG_ENV_RANGE < CONFIG_ENV_SIZE) return 1; ret = env_export(env_new); if (ret) return ret; #ifdef CONFIG_ENV_OFFSET_REDUND // 修复点:使用环境变量自身的flags管理序列号 uint8_t current_flags = env_new->flags; // 获取当前序列号 // 序列号递增并处理回绕 if (current_flags == 255) { env_new->flags = 1; // 回绕处理:255 → 1 } else { env_new->flags = current_flags + 1; // 正常递增 } // 重新计算包含新序列号的CRC env_new->crc = crc32(0, env_new->data, ENV_SIZE); /* 确定写入目标分区 */ env_idx = (gd->env_valid == ENV_VALID) ? 1 : 0; // 主分区有效则写入备份,反之亦然 const char *target_name = location[env_idx].name; const char *fallback_name = location[env_idx ^ 1].name; printf("Saving Env to %s (flags: %u -> %u)...\n", target_name, current_flags, env_new->flags); #else const char *target_name = location[0].name; printf("Saving Env to %s...\n", target_name); #endif ret = erase_and_write_env(&location[env_idx], (u_char *)env_new); #ifdef CONFIG_ENV_OFFSET_REDUND if (!ret) { /* preset other copy for next write */ gd->env_valid = gd->env_valid == ENV_REDUND ? ENV_VALID : ENV_REDUND; printf("Env saved to %s. New flags: %u\n", target_name, env_new->flags); return 0; } /* 首选分区失败:尝试备选分区 */ printf("Warning: %s write failed (%d), trying %s...\n", target_name, ret, fallback_name); env_idx = (env_idx + 1) & 1; ret = erase_and_write_env(&location[env_idx], (u_char *)env_new); if (!ret) { /* 备选分区写入成功 */ gd->env_valid = (env_idx == 0) ? ENV_VALID : ENV_REDUND; printf("Env saved to %s (fallback). New flags: %u\n", fallback_name, env_new->flags); return 0; } #endif return ret; } #ifdef CONFIG_ENV_OFFSET_REDUND static int env_nand_load(void) { #if defined(ENV_IS_EMBEDDED) return 0; #else int read1_fail, read2_fail; env_t *tmp_env1, *tmp_env2; int ret = 0; tmp_env1 = (env_t *)malloc(CONFIG_ENV_SIZE); tmp_env2 = (env_t *)malloc(CONFIG_ENV_SIZE); if (tmp_env1 == NULL || tmp_env2 == NULL) { puts("Can't allocate buffers for environment\n"); env_set_default("malloc() failed", 0); ret = -EIO; goto done; } read1_fail = readenv(CONFIG_ENV_OFFSET, (u_char *) tmp_env1); read2_fail = readenv(CONFIG_ENV_OFFSET_REDUND, (u_char *) tmp_env2); ret = env_import_redund((char *)tmp_env1, read1_fail, (char *)tmp_env2, read2_fail, H_EXTERNAL); // 增强错误处理 if (ret == -EIO) { // 主分区损坏时尝试备份分区 if (read1_fail && !read2_fail) { ret = env_import((char *)tmp_env2, 1, H_EXTERNAL); gd->env_valid = ENV_REDUND; } // 备份分区损坏时使用主分区 else if (!read1_fail && read2_fail) { ret = env_import((char *)tmp_env1, 1, H_EXTERNAL); gd->env_valid = ENV_VALID; } } done: free(tmp_env1); free(tmp_env2); return ret; #endif /* ! ENV_IS_EMBEDDED */ } 看看这个代码流程对不对?是否还需要优化其他函数?以及将我当前实现的逻辑写一个详细的方案设计,我要写文档
最新发布
09-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值