tags:[计数原理][乘法逆元][归纳の思想]
题解(复杂度:O(mlogm)):
棘手之处:n的约数多到爆炸。因此我们不妨从因子的角度来分析问题。
对n分解质因数得:n = p1^a1 * p2^a2 * ... * pk^ak。
令 M = (a1+1)*(a2+1)*...*(ak+1)。
p1在答案中被乘的次数为:(a2+1)*(a3+1)*...*(ak+1)*(1+2+...+a1) = M*a1/2
p1给最终答案作出的贡献为:p1^(M*a1/2)。同理可得其它因子给答案的贡献。
将每一个因子做出的贡献乘起来即为最终答案。
tips: 除以2的时候要用乘法逆元
code:
#include <iostream>
using namespace std;
typedef long long LL;
const int NICO = 200000 + 10;
const LL MOD = 1000000000 + 7;
int m, cnt[NICO];
LL mod_pow(LL p, LL k, LL mod)
{
LL res = 1;
while(k > 0)
{
if(k % 2 == 1) res = res * p % mod;
p = p * p % mod;
k /= 2;
}
return res % mod;
}
int main()
{
cin >> m;
for(int i=1;i<=m;i++)
{
int k; cin >> k;
cnt[k] ++;
}
LL M = 1, ans = 1;
for(int i=1;i<NICO;i++)
{
M = M * (cnt[i] + 1) % (2*MOD-2);
}
for(int i=1;i<NICO;i++)
{
LL tmp = M * cnt[i] % (2*MOD-2) / 2;
ans = ans * mod_pow(i, tmp, MOD) % MOD;
}
cout << ans << endl;
}