AI新技术:利用神经网络对图片进行超级压缩

本文探讨了使用卷积神经网络(CNN)进行图像压缩的新方法,旨在实现更快的压缩速度。通过双重网络架构,一个网络生成压缩表示,另一个网络负责从编解码器输出中恢复图像。这种方法利用了CNN的空间信息提取能力,实现了有损压缩的高效并行处理。研究对比了与其他传统编解码器的性能,表明了神经网络在图像压缩领域的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

像神经网络这样的数据驱动算法已席卷全球。他们最近的激增是由于硬件变得更加便宜也更加强大,同时也不缺乏大量的数据的支持。神经网络目前发展到“图像识别”,“自然语言理解”等认知任务,当然也仅限于此类任务。在这篇文章中,我将讨论一种使用神经网络压缩图像的方法,以更快的速度实现图像压缩的最新技术。

本文基于“基于卷积神经网络的端到端压缩框架”(https://arxiv.org/pdf/1708.00838v1.pdf)。

你需要对神经网络有一些熟悉,包括卷积和损失函数。

什么是图像压缩?

图像压缩是转换图像使其占用较少空间的过程。简单地存储图像会占用大量空间,因此存在编解码器,例如JPEG和PNG,旨在减小原始图像的大小。

有损与无损压缩
图像压缩有两种类型:无损和有损。正如他们的名字所暗示的那样,在无损压缩中,有可能获取原始图像的所有数据,而在有损压缩中,有些数据在转换中丢失。

例如JPG是一种有损算法,而PNG是一种无损算法

279bda9bc536e5284d08c2b7189cf2c74042a725


无损和有损压缩之间的比较

仔细看会发现右边的图像有很多小块,这就是信息的丢失。类似颜色附近的像素被压缩为一个区域,节省了空间,但也丢失关于实际像素的信息。当然,像JGEG,PNG等编解码器的实际算法要复杂得多,但这是有损压缩的良好直观示例。无损当然好,但它在磁盘上占用了太大的空间。

虽然有更好的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值