[LeetCode] 209. Minimum Size Subarray Sum (Easy version LC 862)

本文介绍了一种在给定正整数数组中寻找最小子数组的方法,该子数组的和大于或等于目标值。通过使用滑动窗口技术,实现了一个时间复杂度为O(n)的解决方案,并探讨了更高效的O(n log n)算法的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem

Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.

Example:

Input: s = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: the subarray [4,3] has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).

Solution

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        if (nums == null || nums.length == 0) return 0;
        int i = 0, j = 0, sum = 0, min = Integer.MAX_VALUE;
        
        while (i <= j && j < nums.length) {
            sum += nums[j];
            while (sum >= target && i <= j) {
                min = Math.min(min, j-i+1);
                sum -= nums[i];
                i++;
            }
            j++;
        }
        
        return min == Integer.MAX_VALUE ? 0 : min;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值