POJ 1458 Common Subsequence(最长公共子序列LCS)

本文详细介绍了如何求解两个字符串的最长公共子序列(LCS)问题,并提供了具体的DP算法实现。此外,还探讨了如何输出所有可能的LCS串的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

POJ1458 Common Subsequence(最长公共子序列LCS)

http://poj.org/problem?id=1458

题意:

       给你两个字符串, 要你求出两个字符串的最长公共子序列长度.

分析:

       本题不用输出子序列,非常easy,直接处理就可以.

       首先令dp[i][j]==x表示A串的前i个字符和B串的前j个字符的最长公共子序列长度为x.

       初始化: dp全为0.

       状态转移:

       IfA[i]==B[j] then

              dp[i][j]= dp[i-1][j-1]+1

       else

              dp[i][j]= max( dp[i-1][j] , dp[i][j-1] )

       上述公式: 当A[i]==B[j]时, A的第i个字符和B的第j个字符必定在A[1..i]和B[1..j]的最长公共子序列中, 所以dp[i][j]==dp[i-1][j-1]+1.

       当A[i]!=B[j]时, A[i]和B[j]至少有一个是不可能在A[1..i]和B[1..j]的最长公共子序列中的, 所以dp[i][j] = max( dp[i-1][j] , dp[i][j-1] )

       终于所求: dp[n][m].

AC代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=1000+5;

int n,m;
int dp[maxn][maxn];
char s1[maxn],s2[maxn];

int main()
{
    while(scanf("%s%s",s1,s2)==2)
    {
        n=strlen(s1);//s1串长度
        m=strlen(s2);//s2串长度
        memset(dp,0,sizeof(dp));

        for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            if(s1[i-1]==s2[j-1])
                dp[i][j]=dp[i-1][j-1]+1;
            else
                dp[i][j]=max( dp[i-1][j] , dp[i][j-1] );
        }
        printf("%d\n",dp[n][m]);
    }
    return 0;
}

 

如今的问题是怎样按字典序输出全部的LCS串呢?

       能够看到假设我们想求A[1..i]与B[1..j]的LCS, 那么当A[i]==B[j]时,

A[i](也是B[j]字符)这个字符是必定要被选的, 那么我们以下考虑A[1..i-1]和B[1..j-1]的LCS就可以. 我写了一个DFS逆序递推求出全部串的方法, 然后把串保存入set中, 就是按字典序排序且去重后的结果了.

       DFS过程事实上就是一个逆序递推的过程. S字符数组保存了我们当前已经确定了LCS的末尾num个字符. 假设当前A[i]==B[j], 那么A[i]就是一个我们须要保存入S的字符数组. 假设A[i]!=B[j], 那么我们最多有两条不同的路继续前进. 每一个DFS都是一条可行路, 必定会找到一个可行的LCS.

       只是上面方法会出现非常多反复的串, 所以效率比較低. 假设想提高效率还须要记录每一个字符出现的位置并做一定的优化.

代码例如以下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<set>
using namespace std;
const int maxn=100+5;

int n,m;
int dp[maxn][maxn];
char s1[maxn],s2[maxn];

set<string> st;
char s[maxn];
char stmp[maxn];
int cnt;
//dfs从s1串的i位置和s2串的j位置開始逆序递推
//num是当前已经确定了LCS的末尾num个字符
//全部LCS保存到st中排序去重最后输出.
void dfs(int i,int j,int num)
{
    if(num>=cnt)//已经找到了一个LCS
    {
        for(int i=num;i>=1;i--)
            stmp[num-i]=s[i];
        stmp[num]='\0';

        string tmp(stmp);
        st.insert(tmp);
        return ;
    }
    if(s1[i]==s2[j])//该字符必选
    {
        s[++num]=s1[i];
        dfs(i-1,j-1,num);
    }
    else            //分情况讨论
    {
        if(dp[i-1][j]>dp[i][j-1])
            dfs(i-1,j,num);
        else if(dp[i-1][j]<dp[i][j-1])
            dfs(i,j-1,num);
        else
        {
            dfs(i-1,j,num);
            dfs(i,j-1,num);
        }
    }
}

int main()
{
    while(scanf("%s%s",s1,s2)==2)
    {
        n=strlen(s1);//s1串长度
        m=strlen(s2);//s2串长度
        memset(dp,0,sizeof(dp));

        for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            if(s1[i-1]==s2[j-1])
                dp[i][j]=dp[i-1][j-1]+1;
            else
                dp[i][j]=max( dp[i-1][j] , dp[i][j-1] );
        }
        printf("%d\n",dp[n][m]);
        
        cnt=dp[n][m];//cnt为LCS的长度
        
        dfs(n-1,m-1,0);
        
        set<string>::iterator it;
        for(it=st.begin(); it!=st.end(); ++it)
            cout<<*it<<endl;
    }
    return 0;
}

资源下载链接为: https://pan.quark.cn/s/d9ef5828b597 在本文中,我们将探讨如何通过 Vue.js 实现一个带有动画效果的“回到顶部”功能。Vue.js 是一款用于构建用户界面的流行 JavaScript 框架,其组件化和响应式设计让实现这种交互功能变得十分便捷。 首先,我们来分析 HTML 代码。在这个示例中,存在一个 ID 为 back-to-top 的 div 元素,其中包含两个 span 标签,分别显示“回到”和“顶部”文字。该 div 元素绑定了 Vue.js 的 @click 事件处理器 backToTop,用于处理点击事件,同时还绑定了 v-show 指令来控制按钮的显示与隐藏。v-cloak 指令的作用是在 Vue 实例渲染完成之前隐藏该元素,避免出现闪烁现象。 CSS 部分(backTop.css)主要负责样式设计。它首先清除了一些默认的边距和填充,对 html 和 body 进行了全屏布局,并设置了相对定位。.back-to-top 类则定义了“回到顶部”按钮的样式,包括其位置、圆角、阴影、填充以及悬停时背景颜色的变化。此外,与 v-cloak 相关的 CSS 确保在 Vue 实例加载过程中隐藏该元素。每个 .page 类代表一个页面,每个页面的高度设置为 400px,用于模拟多页面的滚动效果。 接下来是 JavaScript 部分(backTop.js)。在这里,我们创建了一个 Vue 实例。实例的 el 属性指定 Vue 将挂载到的 DOM 元素(#back-to-top)。data 对象中包含三个属性:backTopShow 用于控制按钮的显示状态;backTopAllow 用于防止用户快速连续点击;backSeconds 定义了回到顶部所需的时间;showPx 则规定了滚动多少像素后显示“回到顶部”按钮。 在 V
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值