Spark Streaming从Kafka中获取数据,并进行实时单词统计,统计URL出现的次数

1、创建Maven项目

创建的过程参考:http://blog.youkuaiyun.com/tototuzuoquan/article/details/74571374

2、启动Kafka

A:安装kafka集群:http://blog.youkuaiyun.com/tototuzuoquan/article/details/73430874 
B:创建topic等:http://blog.youkuaiyun.com/tototuzuoquan/article/details/73430874

3、编写Pom文件

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>cn.toto.spark</groupId> <artifactId>bigdata</artifactId> <version>1.0-SNAPSHOT</version> <properties> <maven.compiler.source>1.7</maven.compiler.source> <maven.compiler.target>1.7</maven.compiler.target> <encoding>UTF-8</encoding> <scala.version>2.10.6</scala.version> <spark.version>1.6.2</spark.version> <hadoop.version>2.6.4</hadoop.version> </properties> <dependencies> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>${scala.version}</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-compiler</artifactId> <version>${scala.version}</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-reflect</artifactId> <version>${scala.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.10</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>${hadoop.version}</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.38</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.10</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-mllib_2.10</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_2.10</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_2.10</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-flume_2.10</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka_2.10</artifactId> <version>${spark.version}</

转载于:https://www.cnblogs.com/sy646et/p/7197664.html

使用 Spark StreamingKafka 中读取数据进行实时处理和分析可以分为以下几个步骤: 1. 引入相关依赖 需要在项目中引入以下依赖: ```xml <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_2.11</artifactId> <version>2.4.0</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka-0-10_2.11</artifactId> <version>2.4.0</version> </dependency> ``` 2. 创建 SparkConf 和 StreamingContext 对象 ```java SparkConf conf = new SparkConf().setAppName("KafkaSparkStreamingDemo").setMaster("local[*]"); StreamingContext streamingContext = new StreamingContext(conf, Durations.seconds(5)); ``` 3. 定义 Kafka 参数 需要定义 Kafka 参数,包括 Kafka 集群地址、消费组 ID、要读取的 Topic 等。 ```java Map<String, Object> kafkaParams = new HashMap<>(); kafkaParams.put("bootstrap.servers", "localhost:9092"); kafkaParams.put("group.id", "test"); kafkaParams.put("auto.offset.reset", "latest"); Set<String> topics = Collections.singleton("test"); ``` 4. 读取 Kafka 数据 使用 KafkaUtils.createDirectStream 方法读取 Kafka 中的数据,将其转换为 DStream。 ```java JavaInputDStream<ConsumerRecord<String, String>> kafkaStream = KafkaUtils.createDirectStream( streamingContext, LocationStrategies.PreferConsistent(), ConsumerStrategies.<String, String>Subscribe(topics, kafkaParams) ); ``` 5. 对数据进行处理和分析 可以使用 Spark Streaming 的各种算子对数据进行处理和分析,例如 map、filter、reduceByKey 等。 ```java JavaDStream<String> lines = kafkaStream.map(ConsumerRecord::value); JavaDStream<String> words = lines.flatMap(x -> Arrays.asList(x.split(" ")).iterator()); JavaPairDStream<String, Integer> wordCounts = words.mapToPair(s -> new Tuple2<>(s, 1)) .reduceByKey((i1, i2) -> i1 + i2); ``` 6. 启动 StreamingContext ```java streamingContext.start(); streamingContext.awaitTermination(); ``` 完整的示例代码如下: ```java import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.Map; import java.util.Set; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.common.serialization.StringDeserializer; import org.apache.spark.SparkConf; import org.apache.spark.streaming.Durations; import org.apache.spark.streaming.api.java.JavaInputDStream; import org.apache.spark.streaming.api.java.JavaPairDStream; import org.apache.spark.streaming.api.java.JavaStreamingContext; import org.apache.spark.streaming.kafka010.ConsumerStrategies; import org.apache.spark.streaming.kafka010.KafkaUtils; import org.apache.spark.streaming.kafka010.LocationStrategies; import scala.Tuple2; public class KafkaSparkStreamingDemo { public static void main(String[] args) throws InterruptedException { SparkConf conf = new SparkConf().setAppName("KafkaSparkStreamingDemo").setMaster("local[*]"); JavaStreamingContext streamingContext = new JavaStreamingContext(conf, Durations.seconds(5)); Map<String, Object> kafkaParams = new HashMap<>(); kafkaParams.put("bootstrap.servers", "localhost:9092"); kafkaParams.put("key.deserializer", StringDeserializer.class); kafkaParams.put("value.deserializer", StringDeserializer.class); kafkaParams.put("group.id", "test"); kafkaParams.put("auto.offset.reset", "latest"); kafkaParams.put("enable.auto.commit", false); Set<String> topics = Collections.singleton("test"); JavaInputDStream<ConsumerRecord<String, String>> kafkaStream = KafkaUtils.createDirectStream( streamingContext, LocationStrategies.PreferConsistent(), ConsumerStrategies.<String, String>Subscribe(topics, kafkaParams) ); JavaPairDStream<String, Integer> wordCounts = kafkaStream.map(ConsumerRecord::value) .flatMap(line -> Arrays.asList(line.split(" ")).iterator()) .mapToPair(word -> new Tuple2<>(word, 1)) .reduceByKey((count1, count2) -> count1 + count2); wordCounts.print(); streamingContext.start(); streamingContext.awaitTermination(); } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值