leetcode 476. Number Complement

整数补码算法实现
本文介绍了一种求解正整数补码的有效算法。通过分析整数的二进制表示,提出三种方法来实现补码计算:位操作法、逐位反转法及掩码法。其中,位操作法最为高效简洁。

Given a positive integer, output its complement number. The complement strategy is to flip the bits of its binary representation.

Note:

  1. The given integer is guaranteed to fit within the range of a 32-bit signed integer.
  2. You could assume no leading zero bit in the integer’s binary representation.

Example 1:

Input: 5
Output: 2
Explanation: The binary representation of 5 is 101 (no leading zero bits), and its complement is 010. So you need to output 2.

Example 2:

Input: 1
Output: 0
Explanation: The binary representation of 1 is 1 (no leading zero bits), and its complement is 0. So you need to output 0.

 

解法1:

class Solution(object):
    def findComplement(self, num):
        """
        :type num: int
        :rtype: int
        """
        # 0 => 1
        # 1 => 0
        # 2 => 0x10 => 0x01 => 1
        # 3 => 0x11 => 0x00 => 0
        # 4 => 0x100 => 0x011 => 3
        # 5 => 0x101 => 0x010 => 2
        # 6 = > 0x110 => 0x001 => 1
        # 7 => 0x111 => 0x000=>0
        # count the neareat 2^n of num, i.e. x
        # ans = x - num
        # calc x: move bit     
        if num == 0:
            return 1
        bits = 0
        n = num
        while n:
            bits += 1
            n = n>>1
        x = (1<<bits)-1
        return x-num

观察下就知道规律。

100110, its complement is 011001, the sum is 111111. So we only need get the min number large or equal to num, then do substraction

更精简一点的解法:

class Solution {
public:
    int findComplement(int num) {
        unsigned mask = ~0;
        while (num & mask) mask <<= 1;
        return ~mask & ~num;
    }
};

For example,

num          = 00000101
mask         = 11111000
~mask & ~num = 00000010

 

解法2:

class Solution(object):
    def findComplement(self, num):
        """
        :type num: int
        :rtype: int
        """
        # reverse every bit in num and constrcut answer
        if num == 0:
            return 1
        ans = 0
        n = num
        nth_bit = 0
        while n:
            if n & 1 == 0:
                ans += (1<<nth_bit)
            n = n>>1
            nth_bit += 1
        return ans        

解法3:

 没有弄明白,后续再说。

int findComplement(int num) {
    int mask = num;
    mask |= mask >> 1;
    mask |= mask >> 2;
    mask |= mask >> 4;
    mask |= mask >> 8;
    mask |= mask >> 16;
    return num ^ mask;
}

mask |= mask >> 1will set the first left two bits to be 1, mask |= mask >> 2will set the first left four bits to be 1,
mask |= mask >> 4will set the first left 8 bits to be 1, … , at last, all the bits will be 1.

 

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值