POJ2496 Military Recruit

在军事征召的背景下,一位即将成为精英部队成员的汤姆使用谷歌地图获取训练区域的卫星图像,确定可能的入口和出口点及连接路径长度。他面临的问题是如何在未知的地形中找到最短的可行距离,以便通过至少达到特定概率的考试。通过Floyd算法计算最短路径,然后根据给定的概率计算出汤姆需要练习的最短距离。
                                                                                            Military Recruit
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 1124 Accepted: 542

Description

Background 
Tom is a military recruit for an elite army unit. As the last part of his final exams, he will be put into unknown terrain and has to find his way to a designated exit point, carrying all his heavy military gear. 
As Tom is a little bit afraid of this task, he has used Google Maps to obtain satellite images of the training area. He has identified all the possible entry and exit spots and possible connections with their estimated length. This relation between sites does not need to be symmetric due to different terrain heights. 
However, he does not know, from which site to which site he will have to march. Unfortunately, he quickly realizes that he won't be able to successfully perform the march in the worst-case of the two sites that have the maximum distance to each other, no matter how hard he practices. 
Common sense tells him that his instructors will always pick distinct sites for the entry and exit sites, and he assumes that every pair of distinct sites has equal probability to become his task. 
Problem 
Given a set of sites, possible connections between some of the sites together with their length and Tom's desired success probability p, you are to compute the minimum distance Tom must be comfortable with so that he will pass his exam with at least probability p, assuming that every pair of distinct sites is equally likely.

Input

The first line contains the number of scenarios. 
The next line contains an integer p (1 <= p <= 100) specifying Tom's minimum success probability. Then follows a line with the number of sites n (2 <= n <= 100). The subsequent n lines contain n integers each, separated by a space. The i-th line contains the distances from site i to all other sites, e.g. the distance from site i to site j can be found in the i-th line at position j. Distances are non-negative integers less than 1000. The distance from a site to itself will always be zero. If the distance between two sites is "-1" there is no direct connection between those sites in the corresponding direction. You can assume that every site can be reached somehow from every other site.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. 
Then print a single line with the minimum distance Tom has to practice for followed by an empty line.

Sample Input

2
67
3
0 1 2
1 0 3
2 3 0
50
4
0 1 -1 -1
-1 0 1 999
1 -1 0 -1
-1 999 -1 0

Sample Output

Scenario #1:
3

Scenario #2:
2

Source

 
 

思路

一个测试,给出N个点之间的距离。然后给出一个概率P(注意这个P是个整数,转换成概率后要除以100,然后变成小数)。然后这个人随即选起始点对(起点和终点时不同的),问,这个人至少能够完成多远的距离,才能通过以概率P/100通过测试。首先利用FLOYD求出这些点之间的距离。然后把距离排序。找出符合条件的最小距离即可。
 

代码

 1 #include <cstdlib>
 2 #include <iostream>
 3 #include <cstdio>
 4 #include <cstring>
 5 #include <cmath>
 6 #include <cctype>
 7 #include <algorithm>
 8 
 9 #define MAXCOST 99999999
10 
11 using namespace std;
12 
13 
14 int mp[100+2][100+2];
15 int final_cost[100*100+4];
16 
17 
18 
19 int main(int argc, char *argv[])
20 {
21     
22     int t;
23     
24     scanf("%d",&t);
25     
26     int i,j,k;
27     int casen=1;
28     for(casen=1;casen<=t;casen++)
29     {
30                                  int n,m;
31                                  double p;
32                                  scanf("%lf",&p);
33                                  scanf("%d",&n);
34                                  
35                                  for(i=1;i<=n;i++)
36                                  {
37                                                  for(j=1;j<=n;j++)
38                                                  {
39                                                                   int cost;
40                                                                   scanf("%d",&cost);
41                                                                   if(cost==-1)
42                                                                   {mp[i][j]=MAXCOST;}
43                                                                   else
44                                                                   {mp[i][j]=cost;}
45                                                  }
46                                  }
47                                  
48                                  
49                                  for(k=1;k<=n;k++)
50                                  for(i=1;i<=n;i++)
51                                  for(j=1;j<=n;j++)
52                                  {
53                                                   if(mp[i][j]>mp[i][k]+mp[k][j])
54                                                   mp[i][j]=mp[i][k]+mp[k][j];
55                                  }
56                                  k=0;
57                                  
58                                  for(i=1;i<=n;i++)
59                                  for(j=1;j<=n;j++)
60                                  {if(i==j)
61                                  continue;
62                                  final_cost[k++]=mp[i][j];}
63                                  
64                                  
65                                  
66                                  
67                                  sort(final_cost,final_cost+k);
68                                  p/=100.0;
69                                  
70                                 
71                                  double tmp=p*k;
72                                  
73                                  int x=(int)ceil(tmp);
74                                  
75                                  
76                                  printf("Scenario #%d:\n",casen);
77                                  
78                                  printf("%d\n\n",final_cost[x-1]);
79                                  
80                                  
81                                  
82                                  
83     }
84                                                   
85                                                   
86                                                   
87                                                   
88     
89     
90     
91     
92     
93     system("PAUSE");
94     return EXIT_SUCCESS;
95 }

 

转载于:https://www.cnblogs.com/zjushuiping/archive/2012/10/24/2737916.html

(1)普通用户端(全平台) 音乐播放核心体验: 个性化首页:基于 “听歌历史 + 收藏偏好” 展示 “推荐歌单(每日 30 首)、新歌速递、相似曲风推荐”,支持按 “场景(通勤 / 学习 / 运动)” 切换推荐维度。 播放页功能:支持 “无损音质切换、倍速播放(0.5x-2.0x)、定时关闭、歌词逐句滚动”,提供 “沉浸式全屏模式”(隐藏冗余控件,突出歌词与专辑封面)。 多端同步:自动同步 “播放进度、收藏列表、歌单” 至所有登录设备(如手机暂停后,电脑端打开可继续播放)。 音乐发现与管理: 智能搜索:支持 “歌曲名 / 歌手 / 歌词片段” 搜索,提供 “模糊匹配(如输入‘晴天’联想‘周杰伦 - 晴天’)、热门搜索词推荐”,结果按 “热度 / 匹配度” 排序。 歌单管理:创建 “公开 / 私有 / 加密” 歌单,支持 “批量添加歌曲、拖拽排序、一键分享到社交平台”,系统自动生成 “歌单封面(基于歌曲风格配色)”。 音乐分类浏览:按 “曲风(流行 / 摇滚 / 古典)、语言(国语 / 英语 / 日语)、年代(80 后经典 / 2023 新歌)” 分层浏览,每个分类页展示 “TOP50 榜单”。 社交互动功能: 动态广场:查看 “关注的用户 / 音乐人发布的动态(如‘分享新歌感受’)、好友正在听的歌曲”,支持 “点赞 / 评论 / 转发”,可直接点击动态中的歌曲播放。 听歌排行:个人页展示 “本周听歌 TOP10、累计听歌时长”,平台定期生成 “全球 / 好友榜”(如 “好友中你本周听歌时长排名第 3”)。 音乐圈:加入 “特定曲风圈子(如‘古典音乐爱好者’)”,参与 “话题讨论(如‘你心中最经典的钢琴曲’)、线上歌单共创”。 (2)音乐人端(创作者中心) 作品管理: 音乐上传:支持 “无损音频(FLAC/WAV)+ 歌词文件(LRC)+ 专辑封面” 上传,填写 “歌曲信息
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值