URAL 1004 Sightseeing Trip(最小环)

本文介绍了一种寻找从同一地点出发并返回的最短环游路径算法,该算法适用于旅游景点路线规划等问题。通过Floyd算法求解,实现对多条路径的长度计算与比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sightseeing Trip

Time limit: 0.5 second
Memory limit: 64 MB
There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place.
Your task is to write a program which finds such a route. In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y1, …, yk, k > 2. The road yi (1 ≤ ik − 1) connects crossing points xi and xi+1, the road yk connects crossing points xk and x1. All the numbers x1, …, xk should be different. The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y1) + L(y2) + … + L(yk) where L(yi) is the length of the road yi (1 ≤ ik). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible, because there is no sightseeing route in the town.

Input

Input contains T tests (1 ≤ T ≤ 5). The first line of each test contains two integers: the number of crossing points N and the number of roads M (3 ≤ N ≤ 100; 3 ≤ MN · (N − 1)). Each of the next M lines describes one road. It contains 3 integers: the number of its first crossing point a, the number of the second one b, and the length of the road l (1 ≤ a, bN; ab; 1 ≤ l ≤ 300). Input is ended with a “−1” line.

Output

Each line of output is an answer. It contains either a string “No solution.” in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x1 to xk from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

Sample

inputoutput
5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20
4 3
1 2 10
1 3 20
1 4 30
-1
1 3 5 2
No solution.
Problem Source: Central European Olympiad in Informatics 1999
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <stack>
#include <queue>
#include <vector>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
typedef long long ll;
using namespace std;
const int N = 1e2+10;
const int M = 24005;
const int INF=0x7ffffff;
int  dist[N][N], w[N][N];
int  pre[N][N];
int  path[N];
int  n, m, num, minc;

void floyd() {
    minc=INF;
    for(int k=1; k<=n; k++) {
        for(int i=1; i<k; i++)
            for(int j=i+1; j<k; j++) {
                int  ans=dist[i][j]+w[i][k]+w[k][j];
                if(ans<minc) { //ж‰ѕе€°жњЂдји§Ј
                    minc=ans;
                    num=0;
                    int p=j;
                    while(p!=i) { //йЂ†еђ‘еЇ»ж‰ѕе‰Ќй©±йЃЌеЋ†зљ„и·Їеѕ„е№¶е°†е…¶е­е‚Ёиµ·жќҐ
                        path[num++]=p;
                        p=pre[i][p];
                    }
                    path[num++]=i;
                    path[num++]=k;
                }
            }
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++) {
                if(dist[i][j]>dist[i][k]+dist[k][j]) {
                    dist[i][j]=dist[i][k]+dist[k][j];
                    pre[i][j]=pre[k][j];
                }
            }
    }
}

int main() {
    int  u, v, cost;
    while(cin >> n) {
        if(n<0) break;
        cin >> m;
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++) {
                dist[i][j]=w[i][j]=INF;
                pre[i][j]=i;
            }
        for(int i=1; i<=m; i++) {
            scanf("%d%d%d",&u,&v,&cost);
            if(dist[u][v]>cost)   //处理重边
                w[u][v]=w[v][u]=dist[u][v]=dist[v][u]=cost;
        }
        floyd();
        if(minc==INF)
            printf("No solution.\n");
        else {
            printf("%d",path[0]);
            for(int i=1; i<num; i++)
                printf(" %d",path[i]);
            puts("");
        }
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/jianrenfang/p/6021351.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值