BestCoder Round #3 A,B

本文介绍了两道编程题目,一是关于任务调度的问题,需要找出额外任务的执行时机;二是统计特定子序列的数量,涉及数组处理与算法设计。文章提供了完整的代码实现及样例解释。

A.预处理出来,0(1)输出。

Task schedule

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 387    Accepted Submission(s): 193


Problem Description
有一台机器,而且给你这台机器的工作表。工作表上有n个任务,机器在ti时间运行第i个任务,1秒就可以完毕1个任务。


有m个询问,每一个询问有一个数字q。表示假设在q时间有一个工作表之外的任务请求,请计算何时这个任务才干被运行。
机器总是依照工作表运行。当机器空暇时马上运行工作表之外的任务请求。

 

Input
输入的第一行包括一个整数T。 表示一共同拥有T组測试数据。



对于每组測试数据:
第一行是两个数字n, m,表示工作表里面有n个任务, 有m个询问;
第二行是n个不同的数字t1, t2, t3....tn,表示机器在ti时间运行第i个任务。
接下来m行,每一行有一个数字q,表示在q时间有一个工作表之外的任务请求。

特别提醒:m个询问之间是无关的。

[Technical Specification]
1. T <= 50
2. 1 <= n, m <= 10^5
3. 1 <= ti <= 2*10^5, 1 <= i <= n
4. 1 <= q <= 2*10^5

 

Output
对于每个询问,请计算并输出该任务何时才干被运行,每个询问输出一行。
 

Sample Input

   
1 5 5 1 2 3 5 6 1 2 3 4 5
 

Sample Output

   
4 4 4 4 7
 

Source
 
#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-10
///#define LL __int64
#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)?0:x)

const int maxn = 201000;

using namespace std;

int vis[maxn];
int num[maxn];

int main()
{
    int T;
    cin >>T;
    while(T--)
    {
        int n, m;
        cin >>n>>m;
        memset(vis, 0, sizeof(vis));
        int x;
        for(int i = 1; i <= n; i++)
        {
            scanf("%d",&x);
            vis[x] = 1;
        }
        int now;
        for(int i = maxn-1; i >= 1; i--)
        {
            if(!vis[i])
            {
                now = i;
                num[i] = now;
                continue;
            }
            num[i] = now;
        }
        while(m--)
        {
            scanf("%d",&x);
            printf("%d\n",num[x]);
        }
    }
    return 0;
}

B.统计左右比m大的个数,然后求和。

BestCoder Sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 258    Accepted Submission(s): 108


Problem Description
Mr Potato is a coder.
Mr Potato is the BestCoder.

One night, an amazing sequence appeared in his dream. Length of this sequence is odd, the median number is M, and he named this sequence as  Bestcoder Sequence.

As the best coder, Mr potato has strong curiosity, he wonder the number of consecutive sub-sequences which are  bestcoder sequences in a given permutation of 1 ~ N.
 

Input
Input contains multiple test cases. 
For each test case, there is a pair of integers N and M in the first line, and an permutation of 1 ~ N in the second line.

[Technical Specification]
1. 1 <= N <= 40000
2. 1 <= M <= N
 

Output
For each case, you should output the number of consecutive sub-sequences which are the  Bestcoder Sequences
 

Sample Input

   
1 1 1 5 3 4 5 3 2 1
 

Sample Output

   
1 3
Hint
For the second case, {3},{5,3,2},{4,5,3,2,1} are Bestcoder Sequence.
 

Source
#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-10
#define LL __int64
///#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)?0:x)

const int maxn = 101000;

using namespace std;

int num[maxn];
LL sum1[maxn];
LL sum2[maxn];
int main()
{
    int n, m;
    while(cin >>n>>m)
    {
        memset(sum1, 0, sizeof(sum1));
        memset(sum2, 0, sizeof(sum2));
        int s;
        for(int i = 1; i <= n; i++)
        {
            scanf("%d",&num[i]);
            if(num[i] == m) s = i;
        }
        int cnt = 0;
        int pp = 40000;
        sum1[pp] = 1;
        for(int i = s-1; i >= 1; i--)
        {
            if(num[i] > m) cnt++;
            else if(num[i] < m) cnt--;
            sum1[cnt+pp]++;
        }
        cnt = 0;
        LL ans = 0;
        ans += sum1[pp];
        for(int i = s+1; i <= n; i++)
        {
            if(num[i] > m) cnt++;
            else if(num[i] < m)cnt--;
            sum2[cnt+pp]++;
            ans += sum1[pp-cnt];
        }
        cout<<ans<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值