HDU 1085-Holding Bin-Laden Captive!(生成功能)

寻找拉登的数学谜题
这篇文章探讨了一个关于中国杭州藏匿的拉登所抛出的数学难题,涉及三种硬币面额组合,旨在找出最小无法用给定硬币组合支付的价值。通过编程解决这一问题,展示了解决复杂数学问题的算法应用。

Holding Bin-Laden Captive!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 15384    Accepted Submission(s): 6892


Problem Description
We all know that Bin-Laden is a notorious terrorist, and he has disappeared for a long time. But recently, it is reported that he hides in Hang Zhou of China! 
“Oh, God! How terrible! ”



Don’t be so afraid, guys. Although he hides in a cave of Hang Zhou, he dares not to go out. Laden is so bored recent years that he fling himself into some math problems, and he said that if anyone can solve his problem, he will give himself up! 
Ha-ha! Obviously, Laden is too proud of his intelligence! But, what is his problem?


“Given some Chinese Coins (硬币) (three kinds-- 1, 2, 5), and their number is num_1, num_2 and num_5 respectively, please output the minimum value that you cannot pay with given coins.”
You, super ACMer, should solve the problem easily, and don’t forget to take $25000000 from Bush!

 

Input
Input contains multiple test cases. Each test case contains 3 positive integers num_1, num_2 and num_5 (0<=num_i<=1000). A test case containing 0 0 0 terminates the input and this test case is not to be processed.
 

Output
Output the minimum positive value that one cannot pay with given coins, one line for one case.
 

Sample Input
1 1 3 0 0 0
 

Sample Output
4
仍旧是母函数水过。
题意:有3种面值的硬币{1,2,5} 如今给出这3种硬币的个数,求最小不能组成的面值。

暴力生成 a[]数组扫一遍第一个为0的就是最小不能组成的面值
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cctype>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <list>
#define maxn 100100
#define ll long long
#define INF 0x3f3f3f3f
#define pp pair<int,int>
using namespace std;
int a[maxn],b[maxn],v[3]={1,2,5},p,n[3];
void solve()
{
	p=n[0]+n[1]*2+n[2]*5;
	memset(a,0,sizeof(a));
	a[0]=1;
	for(int i=0;i<3;i++)
	{
		memset(b,0,sizeof(b));
		for(int j=0;j<=n[i]&&j*v[i]<=p;j++)
			for(int k=0;k+j*v[i]<=p;k++)
			b[k+j*v[i]]+=a[k];
		memcpy(a,b,sizeof(b));
	}
	int ans;
	for(ans=0;ans<=p;++ans)
		if(a[ans]==0)break;
	printf("%d\n",ans);
}
int main()
{
	while(~scanf("%d%d%d",&n[0],&n[1],&n[2]))
	{
		if(!n[0]&&!n[1]&&!n[2])break;
		solve();
	}
	return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值