Lining Up(在一条直线上的最大点数目,暴力)

本文探讨了一种算法挑战——确定平面上最多共线点的数量。通过计算几何的方法,使用C++和Java实现,该文提供了详细的解决方案及代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lining Up

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 1274    Accepted Submission(s): 366

Problem Description
``How am I ever going to solve this problem?" said the pilot. 
Indeed, the pilot was not facing an easy task. She had to drop packages at specific points scattered in a dangerous area. Furthermore, the pilot could only fly over the area once in a straight line, and she had to fly over as many points as possible. All points were given by means of integer coordinates in a two-dimensional space. The pilot wanted to know the largest number of points from the given set that all lie on one line. Can you write a program that calculates this number? 
Your program has to be efficient! 
 

 

Input
The input consists of multiple test cases, and each case begins with a single positive integer on a line by itself indicating the number of points, followed by N pairs of integers, where 1 < N < 700. Each pair of integers is separated by one blank and ended by a new-line character. No pair will occur twice in one test case. 
 

 

Output
For each test case, the output consists of one integer representing the largest number of points that all lie on one line, one line per case.
 

 

Sample Input
5 1 1 2 2 3 3 9 10 10 11
 

 

Sample Output
3
 

题解:错了好一会儿,发现是排序那里写错了,多此一举。。。都怪以前的qsort,使我现在都快不敢直接判断了。。。

思路是先找出所有点,求出相同直线的个数sum,根据n*(n - 1)/2=sum,求出n;借助队友的思路;

ac代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long LL;
int tp;
struct Point{
        double x, y;
        Point(){
            
        }
        Point(double x, double y){
            this->x = x;
            this->y = y;
        }
};
Point point[1010];
struct Node{
    double k, b;
    Node(double k,double b){
        this->k = k;
        this->b = b;
    }
    Node(){
        
    }
    bool operator < (const Node &a) const{
        if(k != a.k){//直接比就可以。。。 
            return k < a.k;
        }
        else//
            return b < a.b;
    }
};
Node dt[250000];
Node operator + (Point a,Point b){
        double k, t;
        k = (a.y - b.y) / (a.x - b.x);
        t = a.y - k * a.x;
        return Node(k,t);
}
bool operator == (Node a, Node b){
        if(abs(a.k - b.k) < 1e-6){
            if(abs(a.b - b.b) < 1e-6){
                return true;
            }
        }
        return false;
}
int getn(int a, int b, int c){
    double t = b * b - 4 * a * c;
    double x = ( -b + sqrt(t) ) / (2.0 * a);
    return (int)x;
}
int main(){
    int N;
    while(~scanf("%d",&N)){
        double x, y;
        tp = 0; 
        for(int i = 0; i < N; i++){
            scanf("%lf%lf",&x,&y);
            point[i] = Point(x, y);
            for(int j = 0; j < i; j++){
                dt[tp++] = point[i] + point[j];
            }
        }
        if(N ==  1){
            puts("1");continue;
        }
        sort(dt, dt + tp);
        int ans = 0, temp = 0;
        for(int i = 1; i < tp; i++){
            if(dt[i] == dt[i - 1]){
                temp++;
                ans = max(ans,temp);
            }
            else temp = 0;
        }
        ans++;
        printf("%d\n", getn(1, -1, -2 * ans) );
    }
    return 0;
}

 java:

package com.lanqiao.week1;

import java.util.Arrays;
import java.util.Scanner;

public class poj1118 {
    private static Scanner cin;
    private static int MOD = 1000000007;
    static{
        cin = new Scanner(System.in);
    }
    static int getN(double a, double b, double c){
        double ans = (-b + Math.sqrt(b * b - 4 * a * c)) / (2.0 * a);
        return (int)ans;
    }
    static class Point{
        int x, y;
        public static Node getNode(Point a, Point b) {
            int x = a.x - b.x;
            int y = a.y - b.y;
            double k = 1.0*y/x;
            return new Node(k, a.y - a.x * k);
        }
    }
    static class Node implements Comparable<Node>{
        double k, t;

        public Node(double k, double t) {
            super();
            this.k = k;
            this.t = t;
        }

        public static boolean isEqual(Node a, Node b){
            if(Math.abs(a.k - b.k) <= 1e-15 && 
                    Math.abs(a.t - b.t) <= 1e-15){
                return true;
            }else
                return false;
        }
        @Override
        public int compareTo(Node o) {
            if(Math.abs(o.k - k) <= 1e-15){
                if(o.t < t){
                    return 1;
                }else{
                    return -1;
                }
            }else{
                if(o.k < k){
                    return 1;
                }else{
                    return -1;
                }
            }
        }
        
        
    }
    static Point[] points = new Point[710];
    static Node[] nodes = new Node[250000];
    public static void main(String[] args) {
        int N;
        N = cin.nextInt();
        while(N > 0){
            
            int k = 0;
            for(int i = 0; i < N; i++){
                points[i] = new Point();
                points[i].x = cin.nextInt();
                points[i].y = cin.nextInt();
                for(int j = 0; j < i; j++){
                    nodes[k++] = Point.getNode(points[i], points[j]);
                }
            }
            Arrays.sort(nodes, 0, k);
//            for(int i = 0; i < k; i++){
//                System.out.println((i + 1) + " : " + "k-->" + nodes[i].k + "t-->" + nodes[i].t);
//            }
            int ans = 1, cnt = 1;
            for(int i = 1; i < k; i++){
                if(Node.isEqual(nodes[i], nodes[i - 1])){
                    cnt ++;
                    ans = Math.max(ans, cnt);
                }else{
                    cnt = 1;
                }
            }
            System.out.println(getN(1, -1, -2*ans));
            N = cin.nextInt();
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值