小波变换-python pywavelets

本文通过Python实现了一个包含三种不同频率信号的合成信号,并使用连续小波变换进行频谱分析。展示了如何利用Matplotlib和PyWavelets库进行信号处理,包括信号生成、连续小波变换和结果可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import pywt
from matplotlib.font_manager import FontProperties


sampling_rate = 1024
t = np.arange(0, 1.0, 1.0 / sampling_rate)
f1 = 100
f2 = 200
f3 = 300
data = np.piecewise(t, [t < 1, t < 0.8, t < 0.3],
                    [lambda t: np.sin(2 * np.pi * f1 * t), lambda t: np.sin(2 * np.pi * f2 * t),
                     lambda t: np.sin(2 * np.pi * f3 * t)])
wavename = 'cgau8'
totalscal = 256
fc = pywt.central_frequency(wavename)
cparam = 2 * fc * totalscal
scales = cparam / np.arange(totalscal, 1, -1)
[cwtmatr, frequencies] = pywt.cwt(data, scales, wavename, 1.0 / sampling_rate)
plt.figure(figsize=(8, 4))
plt.subplot(211)
plt.plot(t, data)
plt.xlabel(u"time(s)")
plt.title(u"300Hz 200Hz 100Hz Time spectrum")
plt.subplot(212)
plt.contourf(t, frequencies, abs(cwtmatr))
plt.ylabel(u"freq(Hz)")
plt.xlabel(u"time(s)")
plt.subplots_adjust(hspace=0.4)
plt.show()
print("exit")

 

转载于:https://www.cnblogs.com/undefined-name/p/9360933.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值