numpy的scale就是 x-mean/std

本文演示了如何使用Python的sklearn库进行数据标准化处理。通过具体实例展示了如何利用scale函数对数组进行按列标准化,并计算了原始数据的标准差和平均值。此外,还通过逆转换验证了标准化的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

复制代码
>>> from sklearn import preprocessing
>>> import numpy as np

>>> a=np.array([[1.0,2.0,3.0], [4.0,5.0,9.0], [20,40.0, 80.0]]) >>> scale(a, axis=0) array([[-0.87929684, -0.79227978, -0.79115821], [-0.5195845 , -0.6183647 , -0.61958173], [ 1.39888134, 1.41064448, 1.41073994]]) >>> a.std(axis=0) array([ 8.33999734, 17.24979871, 34.96982827]) >>> a.mean(axis=0) array([ 8.33333333, 15.66666667, 30.66666667]) >>> scale(a) array([[-0.87929684, -0.79227978, -0.79115821], [-0.5195845 , -0.6183647 , -0.61958173], [ 1.39888134, 1.41064448, 1.41073994]]) >>> scale(a)*a.std(axis=0)+a.mean(axis=0) array([[ 1., 2., 3.], [ 4., 5., 9.], [ 20., 40., 80.]])
复制代码

 















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/7256799.html,如需转载请自行联系原作者


代码报错啦Epoch 1/200 训练 Epoch 1: 0%| | 0/104 [00:00<?, ?it/s]Traceback (most recent call last): File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/transform.py", line 141, in apply_transform return _apply_transform(transform, data, unpack_items, lazy, overrides, log_stats) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/transform.py", line 98, in _apply_transform return transform(data, lazy=lazy) if isinstance(transform, LazyTrait) else transform(data) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/io/dictionary.py", line 162, in __call__ data = self._loader(d[key], reader) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/io/array.py", line 255, in __call__ img = reader.read(filename) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/data/image_reader.py", line 922, in read img = nib.load(name, **kwargs_) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/nibabel/loadsave.py", line 110, in load img = image_klass.from_filename(filename, **kwargs) TypeError: from_filename() got an unexpected keyword argument 'simple_mode' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/transform.py", line 141, in apply_transform return _apply_transform(transform, data, unpack_items, lazy, overrides, log_stats) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/transform.py", line 98, in _apply_transform return transform(data, lazy=lazy) if isinstance(transform, LazyTrait) else transform(data) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/compose.py", line 335, in __call__ result = execute_compose( File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/compose.py", line 111, in execute_compose data = apply_transform( File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/transform.py", line 171, in apply_transform raise RuntimeError(f"applying transform {transform}") from e RuntimeError: applying transform <monai.transforms.io.dictionary.LoadImaged object at 0x7f85761a9d30> The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/liulicheng/MultiModal_MedSeg_2025/train/train_unetr.py", line 198, in <module> for batch_data in train_loader: File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 630, in __next__ data = self._next_data() File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 674, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 51, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 51, in <listcomp> data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/data/dataset.py", line 112, in __getitem__ return self._transform(index) File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/data/dataset.py", line 98, in _transform return apply_transform(self.transform, data_i) if self.transform is not None else data_i File "/home/liulicheng/anaconda3/envs/covid_seg/lib/python3.8/site-packages/monai/transforms/transform.py", line 171, in apply_transform raise RuntimeError(f"applying transform {transform}") from e RuntimeError: applying transform <monai.transforms.compose.Compose object at 0x7f84759c5e20>
最新发布
06-27
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值