Pandas中根据列的值选取多行数据

本文详细介绍了如何使用Python的Pandas库进行高效的数据筛选,包括使用==、isin、&、!=及~等操作符进行条件筛选的方法,通过实例展示了如何针对单个或多个条件进行数据行的精确提取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# 选取等于某些值的行记录 用 == 
df.loc[df['column_name'] == some_value]

# 选取某列是否是某一类型的数值 用 isin
df.loc[df['column_name'].isin(some_values)]

# 多种条件的选取 用 &
df.loc[(df['column'] == some_value) & df['other_column'].isin(some_values)]

# 选取不等于某些值的行记录 用 !=
df.loc[df['column_name'] != some_value]

# isin返回一系列的数值,如果要选择不符合这个条件的数值使用~
df.loc[~df['column_name'].isin(some_values)]

import pandas as pd 
import numpy as np
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
    'B': 'one one two three two two one three'.split(),
    'C': np.arange(8), 'D': np.arange(8) * 2})
print(df)

     A      B  C   D
0  foo    one  0   0
1  bar    one  1   2
2  foo    two  2   4
3  bar  three  3   6
4  foo    two  4   8
5  bar    two  5  10
6  foo    one  6  12
7  foo  three  7  14

print(df.loc[df['A'] == 'foo'])

     A      B  C   D
0  foo    one  0   0
2  foo    two  2   4
4  foo    two  4   8
6  foo    one  6  12
7  foo  three  7  14

# 如果你想包括多个值,把它们放在一个list里面,然后使用isin
print(df.loc[df['B'].isin(['one','three'])])

     A     B      C   D
0  foo    one  0   0
1  bar    one  1   2
3  bar  three  3   6
6  foo    one  6  12
7  foo  three  7  14

df = df.set_index(['B'])
print(df.loc['one'])

 A   B   C     D
one  foo  0   0
one  bar  1   2
one  foo  6  12

A   B   C   D   
one foo 0   0
one bar 1   2
two foo 2   4
two foo 4   8
two bar 5   10
one foo 6   12

 

 

来自:https://www.cnblogs.com/everfight/p/pandas_select_rows.html

转载于:https://www.cnblogs.com/keye/p/11016308.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值