纯数学教程 Page 203 例XLI (3)

本文探讨了多项式整除性与泰勒展开的关系,通过多项式的值和导数特性,证明了多项式能被更高次多项式整除的条件。

证明:如果$\phi(x)$是一个多项式,且$\phi(x)$能被$(x-a)$整除,且$\phi'(x)$能被$(x-a)^{m-1}$整除,那么$\phi(x)$能被$(x-a)^m$整除.

证明:根据多项式函数在某一点处的泰勒展开,可知多项式$\phi(x)$在$a$处的幂级数展开为
\begin{equation}
\phi(a)+\frac{\phi(a)'}{1!}(x-a)+\frac{\phi(a)''}{2!}(x-a)^2+\cdots+\frac{\phi(a)^k}{k!}(x-a)^k
\end{equation}
由于$\phi(x)$能被$(x-a)$整除,因此$\phi(a)=0$.且由于$\phi'(x)$能被$(x-a)^{m-1}$整除,因此$\phi(a)',\phi(a)'',\cdots,\phi(a)^{(m-1)}$都为0(为什么?).因此$\phi(x)$能被$(x-a)^m$整除.

转载于:https://www.cnblogs.com/yeluqing/archive/2012/11/09/3828166.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值