POJ3264 线段树模板

原题链接:POJ3264

解析:我拿本题来熟悉线段树模板的,这个应该算是裸题了。

代码示例:

#include<iostream>
#include<cstdio>
using namespace std;
const int INF = 2e9;
int minV = INF;
int maxV = -INF;
struct CNode{
	int l,r;
	int minv,maxv;
	int Mid(){
		return (l+r)/2;
	}
}tree[800020];
void BuildTree(int root,int l,int r){
	tree[root].l = l;
	tree[root].r = r;
	tree[root].minv = INF;
	tree[root].maxv = -INF;
	if(l != r){
		BuildTree(2*root+1,l,(l+r)/2);
		BuildTree(2*root+2,(l+r)/2+1,r);
	}
	return;
}
void Insert(int root,int i,int v){
	if(tree[root].l == tree[root].r){
		tree[root].minv = tree[root].maxv = v;
		return;
	}
	tree[root].minv = min(tree[root].minv,v);
	tree[root].maxv = max(tree[root].maxv,v);
		if(tree[root].Mid() >= i)
			Insert(2*root+1,i,v);
		else Insert(2*root+2,i,v);
}
void Query(int root,int s,int e){
	if(tree[root].minv >= minV && tree[root].maxv <= maxV)
		return;
	if(tree[root].l == s && tree[root].r == e){
		minV = min(minV,tree[root].minv);
		maxV = max(maxV,tree[root].maxv);
		return;
	}
	if(e <= tree[root].Mid())	Query(2*root+1,s,e);
	else if(s > tree[root].Mid())	Query(2*root+2,s,e);
	else{
		Query(2*root+1,s,tree[root].Mid());
		Query(2*root+2,tree[root].Mid()+1,e); 
	}
}
int main(){
	int n,q,h;
	scanf("%d%d",&n,&q);
	BuildTree(0,1,n);
	for(int i = 1;i <= n;i++){
		scanf("%d",&h);
		Insert(0,i,h);
	}	
	int s,e;
	for(int i = 0;i < q;i++){
		minV = INF;
		maxV = -INF;
		scanf("%d%d",&s,&e);
		Query(0,s,e);
		printf("%d\n",maxV-minV);
	}
	return 0;
}

 

转载于:https://www.cnblogs.com/long98/p/10352198.html

<think>好的,用户现在想找与线段树相关的例题或应用场景,特别是示例题目和练习题。我需要根据提供的引用和之前的回答来整理这些信息。 首先,回顾用户之前的提问,他们详细询问了线段树的基础概念、结构、操作以及应用场景。现在用户希望得到具体的例题来练习,这可能意味着他们想通过实践加深理解。引用中提到了几个相关的练习题,比如引用[2]中的K-th Number问题,引用[4]的线段树模板练习题,以及引用[5]中的牛客竞赛题目。这些可以作为例题的来源。 接下来,需要确定如何分类这些例题。通常,线段树的题目可以分为基础题和进阶题。基础题可能涉及单点更新、区间查询,比如区间求和或最大值。进阶题可能涉及区间修改、延迟标记(Lazy Propagation),或者与其他算法结合的问题。 引用[2]中的K-th Number问题涉及建立线段树存储排序后的子数组,然后进行归并,这可能需要用到归并排序线段树来处理区间第K大数的问题。这是一个经典的应用场景,适合作为进阶例题。引用[5]中的题目要求处理区间元素的累加操作,例如每个位置加平方数,然后查询区间和,这需要用到延迟标记来高效处理区间修改,属于进阶题。 另外,引用[3]提到LeetCode的基础题目,比如Range Sum Query和Range Minimum Query,这些都是典型的线段树应用。用户可能需要这些基础题来巩固线段树的构建、查询和更新操作。 应用场景方面,用户之前的回答已经提到动态区间统计、碰撞检测等,但需要更具体的例子,如股票分析、游戏开发中的实时查询,或者计算几何问题。例如,引用[1]中的股票价格波动分析可以作为一个应用实例。 需要注意用户提供的引用中有部分内容可能不直接相关,比如引用[4]的订单问题,可能需要结合线段树处理区间覆盖或判断订单满足情况,但题目描述不够详细,需要谨慎处理。另外,引用[5]的题目涉及复杂的区间操作,每个位置加不同的值,这需要设计特殊的延迟标记来处理,是一个好的进阶例题。 最后,要确保提供的例题有明确的描述和对应的解决思路,帮助用户理解如何应用线段树。同时,分门别类地整理基础与进阶题目,方便用户逐步练习。另外,应用场景需要具体化,让用户了解线段树的实际用途,增强学习的动力。</think>### 线段树例题与应用场景详解 --- #### 一、线段树基础例题 以下是线段树典型的基础练习题,涵盖单点更新、区间查询等核心操作: ##### 1. **区间和查询(Range Sum Query)** **题目描述** 给定数组$arr$,支持以下操作: - 单点更新:将$arr[i]$修改为$val$ - 区间查询:计算$arr[l..r]$的和 **解决思路** 直接套用线段树模板,节点存储区间和,合并操作为加法。 **LeetCode例题**:[303. Range Sum Query - Immutable](https://leetcode.com/problems/range-sum-query-immutable/)(静态数组) **变种题目**:[307. Range Sum Query - Mutable](https://leetcode.com/problems/range-sum-query-mutable/)(动态数组) --- ##### 2. **区间最小值查询(Range Minimum Query)** **题目描述** 给定数组$arr$,支持以下操作: - 单点更新:修改$arr[i]$的值 - 区间查询:找出$arr[l..r]$的最小值 **解决思路** 线段树节点存储区间最小值,合并操作为取最小值。 **例题**:[LeetCode 剑指 Offer 59 - II. 队列的最大值](https://leetcode.cn/problems/dui-lie-de-zui-da-zhi-lcof/)(类似思路) --- #### 二、进阶例题(含区间修改与延迟标记) 以下题目需结合**延迟传播(Lazy Propagation)**优化: ##### 1. **区间加法与区间和查询** **题目描述** 给定数组$arr$,支持操作: - 区间修改:将$arr[l..r]$每个元素增加$k$ - 区间查询:计算$arr[l..r]$的和 **解决思路** 在节点中维护区间和与延迟标记,更新时传递标记到子节点。 **LeetCode例题**:[370. Range Addition](https://leetcode.com/problems/range-addition/)(差分数组也可解) **模板代码**: ```python def update_lazy(self, node, l, r, ul, ur, val): if ul > r or ur < l: # 无交集 return if ul <= l and r <= ur: # 完全覆盖 self.tree[node] += (r - l + 1) * val self.lazy[node] += val return # 向下传递延迟标记 mid = (l + r) // 2 self.push_down(node, mid - l + 1, r - mid) self.update_lazy(2*node+1, l, mid, ul, ur, val) self.update_lazy(2*node+2, mid+1, r, ul, ur, val) self.tree[node] = self.tree[2*node+1] + self.tree[2*node+2] ``` --- ##### 2. **复杂区间操作(平方累加)** **题目描述**[^5] 输入区间$[l, r]$,对第$i$个元素增加$i^2$(如第一个元素加$1$,第二个加$4$,依此类推),并支持查询区间和。 **解决思路** 需维护多个延迟标记(如$\sum i^2$的系数),推导合并公式: - 设区间为$[a, b]$,和为$S = \sum_{i=a}^{b} (i^2 \cdot k_1 + i \cdot k_2 + k_3)$ - 通过数学展开合并标记 --- #### 三、应用场景实例 线段树的典型应用场景如下: 1. **动态区间统计** - **股票分析**:实时计算某时间段内的最高价、最低价或交易量总和[^1] - **传感器数据**:监控温度/湿度等传感器数据的区间波动 2. **游戏开发** - **碰撞检测**:快速判断多个物体的包围盒是否重叠(线段树存储空间划分) - **技能范围判定**:实时计算玩家技能覆盖区域内的目标 3. **计算几何** - **矩形覆盖面积**:合并多个矩形的投影区间,计算总面积 - **线段交点检测**:通过区间扫描线算法加速查询 --- #### 四、经典例题推荐 | 题目类型 | 例题链接 | 核心考点 | |--------------------|--------------------------------------------------------------------------|---------------------------| | 静态区间最值 | [LeetCode 239. Sliding Window Maximum](https://leetcode.com/problems/sliding-window-maximum/) | 线段树维护区间最大值 | | 区间染色问题 | [POJ 2528 Mayor's posters](http://poj.org/problem?id=2528) | 离散化+延迟标记覆盖操作 | | 区间第K大数 | [SPOJ KQUERY](https://www.spoj.com/problems/KQUERY/) | 归并排序树(线段树变种) | | 动态区间众数 | [CodeChef FREQ](https://www.codechef.com/problems/FREQ) | 复杂统计量的维护与合并 | --- #### 五、练习题参考答案思路 1. **如何处理区间修改操作?** - 使用**延迟标记(Lazy Propagation)**,将修改操作暂存于父节点,在查询或后续修改时传递到子节点,避免重复计算[^3]。 2. **线段树与树状数组的核心区别?** - **功能**:线段树支持任意区间操作(求和、最值、自定义合并),树状数组仅支持前缀操作(如前缀和) - **复杂度**:线段树单次操作$O(\log n)$,树状数组常数更小但功能受限[^4]。 3. **线段树空间复杂度为何是$O(4n)$?** - 完全二叉树的节点数上限为$2^{\lceil \log n \rceil + 1}$,实际取$4n$确保极端情况下不越界[^5]。 --- 通过上述例题和场景的练习,可以逐步掌握线段树的实现技巧与应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值