POJ 3169-Layout(差分约束系统)

本文介绍了一个关于牛排队问题的算法题解。通过使用Bellman-Ford算法解决带有距离约束的问题,并展示了如何将最大值约束条件转化为边权约束进行求解。

题目地址:POJ 3169

题意:N头牛排队吃饭 排编号顺序排。大的永远在小的前面。但牛之间有的关系好。有的差,所以有的牛想离某些牛的距离最远不超过D 有的必须大于D 给出它们的关系 求第n头牛跟第一头的最远距离。

思路:非常easy的查分约束,公式非常好看出来。求最大值 约束条件转化为 < ; 所以有S大-S小 <= D1,S大-S小>=D2 把这个条件转化一下--> S小-S大<=-D2。

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <set>
#include <queue>
#include <stack>
#include <map>
using namespace std;
typedef long long LL;
const int inf=0x3f3f3f3f;
const double pi= acos(-1.0);
const double esp=1e-6;
const int maxn=2010;
int dis[maxn],head[2010];
int cnt;
struct node
{
    int u,v,w;
    int next;
}edge[1000010];
void add(int u,int v,int w)
{
    edge[cnt].u=u;
    edge[cnt].v=v;
    edge[cnt].w=w;
    edge[cnt].next=head[u];
    head[u]=cnt++;
}
int Bellman_ford(int n)
{
    int i,j;
    memset(dis,inf,sizeof(dis));
    dis[1]=0;
    for(i=1;i<=n;i++){
        int flag=0;
        for(j=0;j<cnt;j++){
            int u=edge[j].u;
            int v=edge[j].v;
            if(dis[v]>dis[u]+edge[j].w){
                dis[v]=dis[u]+edge[j].w;
                flag=1;
            }
        }
        if(!flag) break;
    }
    for(i=0;i<cnt;i++){
        if(dis[edge[i].v]>dis[edge[i].u]+edge[i].w)
            return 0;
    }
    return 1;
}
int main()
{
    int n,ML,MD;
    int u,v,w;
    while(~scanf("%d %d %d",&n,&ML,&MD)){
        memset(head,-1,sizeof(head));
        cnt=0;
        while(ML--){
            scanf("%d %d %d",&u,&v,&w);
            add(u,v,w);
        }
        while(MD--){
            scanf("%d %d %d",&u,&v,&w);
            add(v,u,-w);
        }
        int ans=Bellman_ford(n);
        if(ans==0)
            puts("-1");
        else{
            if(dis[n]==inf)
                puts("-2");
            else
                printf("%d\n",dis[n]);
        }
    }
    return 0;
}



内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值