[Vampier-magnetic material]4:particle-array-cylinder-with-nofill

本文介绍了一种通过软件模拟创建纳米级别的磁性颗粒阵列的方法。该方法利用cylinder颗粒阵列并设置特定参数,如颗粒尺寸、间距及晶格结构等来构建模拟环境。此外,还详细说明了材料属性配置及模拟过程中的温度、时间步长等关键参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1:产生cylinder颗粒阵列

颗粒阵列的产生主要是通过下面参数实现的

create:particle-array
create:cylinder  #颗粒的形状
dimensions:particle-size= 5 !nm   #颗粒的大小
dimensions:particle-spacing= 1 !nm #颗粒之间的间隔

2:input文件

create:crystal-structure=fcc

create:particle-array
create:cylinder
dimensions:particle-size= 5 !nm
dimensions:particle-spacing= 1 !nm

dimensions:unit-cell-size=3.54
dimensions:system-size-x=30 !nm
dimensions:system-size-y=30!nm
dimensions:system-size-z=15!nm

material:file=particle_array.mat
#---------------------------------------------------
# Simulation attributes
#---------------------------------------------------
sim:temperature=0.1
sim:total-time-steps=11000
sim:time-steps-increment=1000
sim:program=time-series
sim:integrator=monte-carlo
#---------------------------------------------------
# Data output
#---------------------------------------------------
output:time-steps
output:temperature
output:material-magnetisation
config:atoms
config:atoms-output-rate=10

3:material文件

#----------------------------
materials:num-materials = 2
#----------------------------
material[1]:exchange-matrix[1] = 3.0e-21
material[1]:exchange-matrix[2] = 1.0e-21
material[1]:atomic-spin-moment = 2.0 !muB
material[1]:damping-constant = 1.0
material[1]:uniaxial-anisotropy-constant = 1.0e-24
#----------------------------
material[2]:exchange-matrix[1] = 1.0e-21
material[2]:exchange-matrix[2] = 3.0e-21
material[2]:atomic-spin-moment = 3.0 !muB
material[2]:damping-constant = 1.0
material[2]:uniaxial-anisotropy-constant = 1.0e-23

material[1]:core-shell-size = 1.0
material[2]:core-shell-size = 0.8

4:由于在material文件中没有使用fill材料,所以颗粒之间是空的(空气)

最后效果如下:
图片描述

该合成数据集模拟了世界领先的运动服装和鞋类品牌之一耐克的零售和在线销售交易。它故意填充了凌乱、未清理的记录,以复制真实世界的业务数据,非常适合练习数据清理、探索性数据分析 (EDA) 以及构建仪表板或项目组合项目。 有什么超过 2,500 条交易记录,包含: 多个产品线(跑步、篮球、生活方式、训练、足球) 特定性别的销售(男性、女性、儿童) 零售店和在线渠道的销售额 常见的数据问题,例如:空值、地区拼写错误、错误的数据类型、数值列中的负值、日期格式不一致(例如,2023/07/21、21-07-2023 等)、折扣> 100%。 列描述 Order_ID ----交易/订单 ID(一些重复条目) Gender_Category------- 买家细分:男士、女士或儿童 Product_Line------ 商品类型:跑步、篮球等 Product_Name -------售出的特定商品(例如,Air Force 1、Pegasus Turbo) 尺寸-----商品尺寸(例如 7、M、L - 包括缺失/不一致) Units_Sold-------- 销售数量(可以是负数或空数) 建议零售价---------- 最高零售价(有些为零或零) Discount_Applied------ 销售折扣(有些超过 100%) 收入-------折扣后的最终金额(有些计算错误) Order_Date --------交易日期(多种格式和空) Sales_Channel -----------在线或零售 区域-------------印度城市(包括“德里”、“孟加罗尔”等拼写错误) 利润 --------------赚取的利润(可能是不切实际的或负的)
内容概要:本文详细介绍了果蔬采摘机器人末端执行器的柔顺抓取力控制方法,特别是基于广义比例积分(GPI)的力矩控制技术。文章首先概述了该方法的核心原理,即通过建模电机驱动的末端执行器,推导出电机输入电压与负载力矩的关系,并利用积分重构器设计GPI力矩反馈控制器,将力偏差转化为电机输入电压控制。相比传统PI控制,GPI方法无需对力矩跟踪误差求导,避免了系统延时和噪声问题。文章还提供了详细的Python代码实现,包括系统建模、GPI控制器设计、仿真比较和性能指标计算。实验结果表明,GPI控制方法在力矩跟踪误差、采摘完好率等方面表现出显著优势。 适合人群:具备一定编程基础,尤其是对机器人控制、自动化和机电一体化领域有兴趣的研发人员和技术爱好者。 使用场景及目标:①适用于果蔬采摘机器人或其他需要柔顺力控制的机器人应用;②通过仿真和实物实验,验证GPI控制在力矩跟踪、控制平稳性和采摘完好率等方面的优势;③帮助研究人员理解GPI控制器的设计原理及其相对于传统PI控制的改进之处。 其他说明:文章不仅提供了完整的理论推导和代码实现,还深入探讨了GPI控制器的关键技术和工程实现细节,如积分重构技术、四阶误差动态补偿、极点配置方法等。此外,文中还包含了实物实验结果统计和性能对比分析,进一步验证了GPI控制的实际应用价值。对于希望深入了解果蔬采摘机器人末端执行器控制技术的研究人员来说,这是一份非常有价值的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值