《几何与代数导引》习题1.35.5


求直线
\begin{equation}
l_1:  \begin{cases}
    x+y-z=-1\\
x+y=0\\
  \end{cases}
\end{equation}
和直线
\begin{equation}
l_2:  \begin{cases}
    x-2y+3z=6\\
2x-y+3z=6\\
  \end{cases}
\end{equation}

的距离.

解:直线$l_1$的标准方程为
\begin{equation}
  \frac{x}{1}=\frac{y}{-1}=\frac{z-1}{0}
\end{equation}
直线$l_2$的标准方程为
\begin{equation}
  \frac{x}{-1}=\frac{y}{1}=\frac{z-2}{1}
\end{equation}
可见直线$l_1$和$l_2$的方向向量分别是$(1,-1,0)$和$(-1,1,1)$.设向量$p=(x_0,y_0,z_0)$
和向量$(1,-1,0)$垂直,和向量$(-1,1,1)$也垂直,则向量$p$可以是
$(1,1,0)$.直线$l_1$和直线$l_2$上的两点分别为$m=(0,0,1)$和
$n=(0,0,2)$.则$\vec{mn}=(0,0,1)$.
\begin{equation}
\cos\langle\vec{mn},\vec{p}\rangle=\frac{\vec{mn}\cdot\vec{p}}{|\vec{mn}||\vec{p}|}=0
\end{equation}
因此两直线的距离为0,即两直线相交.

转载于:https://www.cnblogs.com/yeluqing/archive/2012/08/11/3828316.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值