2017ICPC北京 J:Pangu and Stones

本文探讨了中国神话中盘古堆石成山的问题抽象为算法挑战。通过区间动态规划方法,解决如何将多堆石头合并为一座大山的问题,同时考虑合并堆数的限制条件。文章提供了一个具体的C++实现方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#1636 : Pangu and Stones

时间限制:1000ms
单点时限:1000ms
内存限制:256MB

描述

In Chinese mythology, Pangu is the first living being and the creator of the sky and the earth. He woke up from an egg and split the egg into two parts: the sky and the earth.

At the beginning, there was no mountain on the earth, only stones all over the land.

There were N piles of stones, numbered from 1 to N. Pangu wanted to merge all of them into one pile to build a great mountain. If the sum of stones of some piles was S, Pangu would need S seconds to pile them into one pile, and there would be S stones in the new pile.

Unfortunately, every time Pangu could only merge successive piles into one pile. And the number of piles he merged shouldn't be less than L or greater than R.

Pangu wanted to finish this as soon as possible.

Can you help him? If there was no solution, you should answer '0'.

输入

There are multiple test cases.

The first line of each case contains three integers N,L,R as above mentioned (2<=N<=100,2<=L<=R<=N).

The second line of each case contains N integers a1,a2 …aN (1<= ai  <=1000,i= 1…N ), indicating the number of stones of  pile 1, pile 2 …pile N.

The number of test cases is less than 110 and there are at most 5 test cases in which N >= 50.

输出

For each test case, you should output the minimum time(in seconds) Pangu had to take . If it was impossible for Pangu to do his job, you should output  0.

样例输入
3 2 2
1 2 3
3 2 3
1 2 3
4 3 3
1 2 3 4
样例输出
9
6
0
区间dp,当时我想的做法都是TLE的
我这个好像不太好,多了一层复杂度
#include<bits/stdc++.h>
using namespace std;
const int N=105;
int a[N],dp[N][N][N],n,l,r;
int main()
{
    while(~scanf("%d%d%d",&n,&l,&r))
    {
        memset(dp,-1,sizeof dp);
        for(int i=1; i<=n; i++)
        {
            scanf("%d",a+i);
            dp[i][i][1]=0;
            a[i]+=a[i-1];
        }
        for(int z=2; z<=n; z++)
            for(int i=1; i<=n; i++)
            {
                int j=i+z-1;
                for(int k=2; k<=r; k++)
                    for(int t=i; t<j; t++)
                    {
                        if(dp[i][t][k-1]==-1||dp[t+1][j][1]==-1)continue;
                        int f=dp[i][t][k-1]+dp[t+1][j][1];
                        if(dp[i][j][k]==-1||dp[i][j][k]>f)dp[i][j][k]=f;
                        if(k>=l&&k<=r&&(dp[i][j][1]==-1||dp[i][j][1]>dp[i][j][k]+a[j]-a[i-1]))
                            dp[i][j][1]=dp[i][j][k]+a[j]-a[i-1];
                    }
            }
        if(dp[1][n][1]==-1)printf("%d\n",0);
        else printf("%d\n",dp[1][n][1]);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/BobHuang/p/8167362.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值