python 神经网络包 NeuroLab

本文介绍了Python中的NeuroLab模块,它类似Matlab的神经网络工具箱,支持多种网络类型如单层感知机、多层前馈网络等。以多层前馈网络为例,讲解了网络配置参数minmax和size的使用,以及如何设置激活函数。后续会进一步补充更多内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

neurolab模块相当于Matlab的神经网络工具箱(NNT)

neurolab模块支持的网络类型:

  • 单层感知机(single layer perceptron)
  • 多层前馈感知机(Multilayer feed forward perceptron)
  • 竞争层(Kohonen Layer)
  • 学习向量量化(Learning Vector Quantization)
  • Elman循环网络(Elman recurrent network)
  • Hopfield循环网络(Hopfield recurrent network)
  • 卷边循环网络(Hemming recurrent network)

这里以多层前馈网络为例:neurolab.net.newff(minmaxsizetransf=None)

Parameters:
minmax: list of list, the outer list is the number of input neurons,

inner lists must contain 2 elements: min and max

Range of input value

size: the length of list equal to the number of layers except input layer,

the element of the list is the neuron number for corresponding layer

Contains the number of neurons for each layer

新版Matlab神经网络训练函数Newff的详细讲解-新版Matlab神经网络训练函数Newff的使用方法.doc 本帖最后由 小小2008鸟 于 2013-1-15 21:42 编辑 新版Matlab神经网络训练函数Newff的详细讲解 一、   介绍新版newffSyntax·          net = newff],{TF1 TF2...TFNl}, BTF,BLF,PF,IPF,OPF,DDF) Descriptionnewff],{TF1 TF2...TFNl}, BTF,BLF,PF,IPF,OPF,DDF) takes several arguments PR x Q1 matrix of Q1 sample R-element input vectorsTSN x Q2 matrix of Q2 sample SN-element target vectorsSiSize of ith layer, for N-1 layers, default = [ ]. TFiTransfer function of ith layer. (Default = 'tansig' for hidden layers and 'purelin' for output layer.)BTFBackpropagation network training function BLFBackpropagation weight/bias learning function IPFRow cell array of input processing functions. OPFRow cell array of output processing functions. DDFData divison function ExamplesHere is a problem consisting of inputs P and targets T to be solved with a network.·          P = [0 1 2 3 4 5 6 7 8 9 10];T = [0 1 2 3 4 3 2 1 2 3 4];Here a network is created with one hidden layer of five neurons.·          net = newff;The network is simulated and its output plotted against the targets.·          Y = sim;plotThe network is trained for 50 epochs. Again the network's output is plotted.·          net.trainParam.epochs = 50;net = train;Y = sim; plot 二、   新版newff与旧版newff调用语法对比 Example1比如输入input(6*1000),输出output为(4*1000),那么旧版定义:net=newff,[14,4],{'tansig','purelin'},'trainlm');新版定义:net=newff; Example2比如输入input(6*1000),输出output为(4*1000),那么旧版定义:net=newff,[49,10,4],{'tansig','tansig','tansig'},'traingdx');新版定义:net=newff; 更详细请看word文档 新版Matlab神经网络训练函数Newff的使用方法.doc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值