poj 2418 Hardwood Species(二叉排序树||map迭代器)

本文介绍了一种使用二叉排序树和标准模板库中的Map来统计字符串出现频率的方法。通过C++实现,文章展示了如何构建二叉排序树插入节点、遍历输出频率及使用Map迭代器进行类似操作。

题目:http://poj.org/problem?id=2418

二叉排序树:

View Code
 1 #include <iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cstdlib>
 5 using namespace std;
 6 int n=0;
 7 typedef struct node
 8 {
 9     char s[31];
10     int num;
11     struct node *lchild;
12     struct node *rchild;
13 }btreenode,*btree;
14 void insert(btree *root,char str[])
15 {
16     btreenode *p=*root,*f;
17     while(p!=NULL)
18     {
19         if(strcmp(p->s,str)==0)
20         {
21             p->num++;
22             return ;
23         }
24         f=p;
25         if(strcmp(str,p->s)<0)
26         p=p->lchild;
27         else
28         p=p->rchild;
29     }
30     p=(btree )malloc(sizeof(btreenode));
31     p->num=1;
32     strcpy(p->s,str);
33     p->lchild=NULL;
34     p->rchild=NULL;
35     if((*root)==NULL)
36     {
37         (*root)=p;
38     }
39     else
40     {
41         if(strcmp(f->s,str)<0)
42         {
43             f->rchild=p;
44         }
45         else
46         {
47             f->lchild=p;
48 
49         }
50     }
51     return ;
52 }
53 void bianli(btree p)
54 {
55      if(p!=NULL)
56      {
57          bianli(p->lchild);
58          printf("%s %.4f\n",p->s,p->num*100.0/n);
59          bianli(p->rchild);
60      }
61      return ;
62 }
63 int main()
64 {
65     btree root;
66     char str[31];
67     root=NULL;
68     while(gets(str)!=NULL)
69     {
70         n++;
71         insert(&root,str);
72     }
73     bianli(root);
74     return 0;
75 }

map迭代器:

View Code
 1 #include <iostream>
 2 #include<string>
 3 #include<map>
 4 #include<iterator>
 5 #include<cstdio>
 6 using namespace std;
 7 
 8 int main()
 9 {
10     string str;
11     int sum=0;
12     map<string,int>tree;
13     while(getline(cin,str))
14     {
15         tree[str]++;
16         sum++;
17     }
18     map<string,int>::iterator iter;
19     for(iter=tree.begin();iter!=tree.end();iter++)
20     {
21         cout<<iter->first;
22         printf(" %.4f\n",iter->second*100.0/sum);
23     }
24     return 0;
25 }

 

转载于:https://www.cnblogs.com/wanglin2011/archive/2013/01/22/2871789.html

【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究(Matlab代码实现)内容概要:本文围绕【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究展开,重点介绍基于Matlab的代码实现方法。文章系统阐述了遍历理论的基本概念、动态模态分解(DMD)的数学原理及其与库普曼算子谱特性之间的内在联系,展示了如何通过数值计算手段分析非线性动力系统的演化行为。文中提供了完整的Matlab代码示例,涵盖数据驱动的模态分解、谱分析及可视化过程,帮助读者理解并复现相关算法。同时,文档还列举了多个相关的科研方向和技术应用场景,体现出该方法在复杂系统建模与分析中的广泛适用性。; 适合人群:具备一定动力系统、线性代数与数值分析基础,熟悉Matlab编程,从事控制理论、流体力学、信号处理或数据驱动建模等领域研究的研究生、博士生及科研人员。; 使用场景及目标:①深入理解库普曼算子理论及其在非线性系统分析中的应用;②掌握动态模态分解(DMD)算法的实现与优化;③应用于流体动力学、气候建模、生物系统、电力系统等领域的时空模态提取与预测;④支撑高水平论文复现与科研项目开发。; 阅读建议:建议读者结合Matlab代码逐段调试运行,对照理论推导加深理解;推荐参考文中提及的相关研究方向拓展应用场景;鼓励在实际数据上验证算法性能,并尝试改进与扩展算法功能。
本系统采用微信小程序作为前端交互界面,结合Spring Boot与Vue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活性与扩展性。 在技术实现上,后端以Java语言为核心,依托Spring Boot框架提供稳定的业务逻辑处理与数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试与优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等核心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范性与可维护性,遵循企业级开发标准,确保了系统的长期稳定运行与后续功能迭代的可行性。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
### 二叉搜索树后序遍历的POJ题目与解决方案 在处理二叉搜索树(Binary Search Tree, BST)时,后序遍历是一种重要的遍历方式。后序遍历遵循“左子树 -> 右子树 -> 根节点”的顺序进行访问[^1]。以下是一个关于二叉搜索树后序遍历的实现方法以及相关的POJ题目解析。 #### 后序遍历的递归实现 以下是使用递归方式实现二叉搜索树后序遍历的代码示例: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def postorder_traversal(root): result = [] if root is not None: result += postorder_traversal(root.left) # 左子树 result += postorder_traversal(root.right) # 右子树 result.append(root.val) # 根节点 return result ``` 上述代码定义了一个`TreeNode`类来表示二叉树节点,并通过递归函数`postorder_traversal`实现了后序遍历[^2]。 #### 后序遍历的非递归实现 非递归实现通常需要借助栈来模拟递归过程: ```python def postorder_traversal_iterative(root): stack, result = [], [] last_visited = None current = root while current or stack: if current: stack.append(current) current = current.left else: peek_node = stack[-1] if peek_node.right and last_visited != peek_node.right: current = peek_node.right else: result.append(peek_node.val) last_visited = stack.pop() return result ``` #### POJ相关题目解析 根据引用内容,以下是一些涉及二叉树遍历的POJ题目及其可能的解法思路[^4]: 1. **POJ 1240 - All in All** 题目要求根据给定的前序和后序遍历结果,推导出所有可能的中序遍历结果。此题可以通过动态规划(DP)解决,结合二叉树的性质构造所有可能的树结构并生成对应的中序遍历序列[^3]。 2. **POJ 1145 - Tree Summing** 此题要求判断是否存在从根到叶子节点的一条路径,使得路径上的节点权值和等于特定值`k`。可以通过递归或迭代的方式实现路径求和逻辑。后序遍历在此题中可用于验证路径是否满足条件[^3]。 #### 示例解答:POJ 1145 以下为POJ 1145的伪代码实现,展示如何利用后序遍历解决问题: ```python def tree_summing(s_expr, target_sum): def parse_tree(s_expr): # 解析S表达式为树结构 pass def dfs(node, current_sum): if not node: return False current_sum += node.val if not node.left and not node.right: # 叶子节点 return current_sum == target_sum return dfs(node.left, current_sum) or dfs(node.right, current_sum) root = parse_tree(s_expr) return dfs(root, 0) # 示例调用 s_expr = "(5 (4 (11 (7 () ()) (2 () ()) ) ()) (8 (13 () ()) (4 () (1 () ()) ) ) )" target_sum = 22 print(tree_summing(s_expr, target_sum)) # 输出 True 或 False ``` #### 性能分析 后序遍历的时间复杂度为O(n),其中n是树中节点的数量[^1]。空间复杂度取决于递归深度,在最坏情况下(退化为链表的树)为O(n)
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值