【LeetCode】Swap Nodes in Pairs

Given a linked list, swap every two adjacent nodes and return its head.

For example,
Given 1->2->3->4, you should return the list as 2->1->4->3.

Your algorithm should use only constant space. You may not modify the values in the list, only nodes itself can be changed.

code :

 

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode *swapPairs(ListNode *head) {
        // Note: The Solution object is instantiated only once and is reused by each test case.
        if(head == NULL)
            return NULL;
        if(head->next == NULL)
            return head;
        
        ListNode *p = head;
        ListNode *q = head->next;
        ListNode *pre = NULL;
        while( q != NULL && q->next != NULL)      // p,q 指向相邻结点一前一后
        {                                        // 注意奇数个结点的情况,判空为第一种
            ListNode *tmp = q->next;
            q->next = p;
            p->next = tmp;
            if( pre == NULL)
            {
                head = q;
                pre = p;
            }
            else
            {
                pre->next = q;
                pre = p;
            }
            p = p->next;
            q = p->next;
        }
        if(pre == NULL)     //只有两个结点
        {
            head = q;
            q->next = p;
            p->next = NULL;
            return head;
        }
        if(q == NULL)       //奇数个结点
        {
            return head;
        }
        q->next = p;        //偶数个结点
        p->next = NULL;
        pre->next = q;
        return head;
        
    }
};


 

 

内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值