POJ 1463 Strategic game【树形DP】

本文介绍了一种解决特定战略游戏问题的方法,该游戏的目标是最小化放置在节点上的士兵数量以覆盖所有边。通过使用动态规划,文章提供了一个有效的解决方案,并给出了具体的实现代码。

Description

Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

Your program should find the minimum number of soldiers that Bob has to put for a given tree.

For example for the tree:

the solution is one soldier ( at the node 1).

Input

The input contains several data sets in text format. Each data set represents a tree with the following description:

  • the number of nodes
  • the description of each node in the following format
    node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifiernumber_of_roads
    or
    node_identifier:(0)

The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500);the number_of_roads in each line of input will no more than 10. Every edge appears only once in the input data.

Output

The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following:

Sample Input

4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)

Sample Output

1
2

思路

和间接上司那道题很像,每个支点有两种状态,放个士兵或者不放士兵。

因此得到状态转移方程:

dp[i][0]+=dp[i.son][1];

dp[rr][1]+=min(dp[i.son][0], dp[i.son][1]);

源码

#include<stdio.h>

#include<string.h>

#include<vector>

#include<iostream>

using namespace std;

int dp[1505][2];

vector<int>V[1505];

void dfs(int rr)

{

       int longs=V[rr].size(), i, j;

       if(longs==0)

       {

              dp[rr][0]=0;

              dp[rr][1]=1;

              return ;

       }

       else

       {

              for(i=0; i<longs; i++)

              {

                     dfs(V[rr][i]);

                     dp[rr][0]=0;

                     dp[rr][1]=1;

                     for(j=0; j<longs; j++)

                     {

                            dp[rr][0]+=dp[V[rr][j]][1];

                            dp[rr][1]+=min(dp[V[rr][j]][0], dp[V[rr][j]][1]);

                     }

              }

       }

}

int main()

{

       int n, i, j, son[1505], sonnum, ff, root, ss;

       while(scanf("%d", &n)!=EOF)

       {

              memset(son, 0, sizeof(son));

              memset(dp, 0, sizeof(dp));

              for(i=0; i<n; i++)

                     V[i].clear();

              for(i=0; i<n; i++)

              {

                     scanf("%d:(%d)", &ff, &sonnum);

                     for(j=0; j<sonnum; j++)

                     {

                            scanf("%d", &ss);

                            son[ss]=1;

                            V[ff].push_back(ss);

                     }

              }

              for(i=0; i<n; i++)

                     if(!son[i])

                     {

                            root=i;

                            break;

                     }

              dfs(root);

              printf("%d\n", min(dp[root][1], dp[root][0]));

       }

}

 

转载于:https://www.cnblogs.com/Hilda/archive/2012/07/31/2617242.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值