CodeForces 451C Predict Outcome of the Game

本文介绍了一个算法,用于预测足球锦标赛中各队伍获胜的可能性,并确保没有队伍最终获胜。该算法通过考虑已进行的比赛数量、各队胜场之间的绝对差异等参数来判断是否有可能实现三支队伍平局的局面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Predict Outcome of the Game
Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Description

There are n games in a football tournament. Three teams are participating in it. Currently k games had already been played.

You are an avid football fan, but recently you missed the whole k games. Fortunately, you remember a guess of your friend for these kgames. Your friend did not tell exact number of wins of each team, instead he thought that absolute difference between number of wins of first and second team will be d1 and that of between second and third team will be d2.

You don't want any of team win the tournament, that is each team should have the same number of wins after n games. That's why you want to know: does there exist a valid tournament satisfying the friend's guess such that no team will win this tournament?

Note that outcome of a match can not be a draw, it has to be either win or loss.

Input

The first line of the input contains a single integer corresponding to number of test cases t(1 ≤ t ≤ 105).

Each of the next t lines will contain four space-separated integers n, k, d1, d2(1 ≤ n ≤ 1012; 0 ≤ k ≤ n; 0 ≤ d1, d2 ≤ k) — data for the current test case.

Output

For each test case, output a single line containing either "yes" if it is possible to have no winner of tournament, or "no" otherwise (without quotes).

Sample Input

Input
5
3 0 0 0
3 3 0 0
6 4 1 0
6 3 3 0
3 3 3 2
Output
yes
yes
yes
no
no

Hint

Sample 1. There has not been any match up to now (k = 0, d1 = 0, d2 = 0). If there will be three matches (1-2, 2-3, 3-1) and each team wins once, then at the end each team will have 1 win.

Sample 2. You missed all the games (k = 3). As d1 = 0 and d2 = 0, and there is a way to play three games with no winner of tournament (described in the previous sample), the answer is "yes".

Sample 3. You missed 4 matches, and d1 = 1, d2 = 0. These four matches can be: 1-2 (win 2), 1-3 (win 3), 1-2 (win 1), 1-3 (win 1). Currently the first team has 2 wins, the second team has 1 win, the third team has 1 win. Two remaining matches can be: 1-2 (win 2), 1-3 (win 3). In the end all the teams have equal number of wins (2 wins).

 1 #include <stdio.h>
 2 #include <string.h>
 3 #include <algorithm>
 4 using namespace std;
 5 
 6 int main()
 7 {
 8     int T;
 9     long long n,k,d1,d2;
10     long long i,j;
11     scanf("%d",&T);
12     while(T--)
13     {
14         scanf("%I64d %I64d %I64d %I64d",&n,&k,&d1,&d2);
15         long long x,y,z,c,v,ma;
16 
17         int flg=0;
18 
19         v=k-d1-2*d2;
20         if(v>=0 && v%3==0 && flg==0)
21         {
22             x=v/3+d1+d2,y=v/3+d2,z=v/3;
23             if((n-k-(x-y+x-z))>=0 && (n-k-(x-y+x-z))%3==0)
24                 flg=1;
25             //if(flg==1)
26             //printf("%d\n",1);
27         }
28 
29         v=k-d1+2*d2;
30         if(v>=0 && v%3==0 && flg==0)
31         {
32             x=v/3+d1-d2,y=v/3-d2,z=v/3;
33             if(x>=0 && y>=0 && z>=0)
34             {
35                 ma=max(x,y);
36                 ma=max(ma,z);
37                 if((n-k-(ma-x+ma-y+ma-z))>=0 && (n-k-(ma-x+ma-y+ma-z))%3==0)
38                     flg=1;
39             }
40             //if(flg==1)
41             //printf("%d\n",2);
42         }
43         
44 
45         v=k+d1-2*d2;
46         if(v>=0 && v%3==0 && flg==0)
47         {
48             x=v/3-d1+d2,y=v/3+d2,z=v/3;
49             if(x>=0 && y>=0 && z>=0)
50             {
51                 ma=max(x,y);
52                 ma=max(ma,z);
53                 if((n-k-(ma-x+ma-y+ma-z))>=0 && (n-k-(ma-x+ma-y+ma-z))%3==0)
54                     flg=1;
55             }
56             //if(flg==1)
57             //printf("%d\n",3);
58         }
59         
60 
61         v=k+d1+2*d2;
62         if(v>=0 && v%3==0 && flg==0)
63         {
64             x=v/3-d1-d2,y=v/3-d2,z=v/3;
65             if(x>=0 && y>=0 && z>=0)
66             {
67                 ma=max(x,y);
68                 ma=max(ma,z);
69                 if((n-k-(ma-x+ma-y+ma-z))>=0 && (n-k-(ma-x+ma-y+ma-z))%3==0)
70                     flg=1;
71             }
72             //if(flg==1)
73             //printf("%d\n",4);
74         }
75         
76 
77         if(flg==1)
78             printf("yes\n");
79         else
80             printf("no\n");
81     }
82 
83 }
View Code

 

转载于:https://www.cnblogs.com/cyd308/p/4771554.html

关于Codeforces上的问题'Trail',目前提供的参考资料中并未直接提及该问题的具体解法或讨论[^1]。然而,在处理类似平台上的编程挑战时,通常会遵循特定的方法论来解决问题。 对于未具体描述的问题'Trail',假设这是一个涉及路径遍历或是图结构中的轨迹计算等问题,一般解决方案可能涉及到深度优先搜索(DFS)、广度优先搜索(BFS)或者是动态规划等技术。这些方法能够有效地探索所有可能性并找到最优解。 考虑到Codeforces平台上许多问题的特点,解决这类题目往往还需要注意边界条件以及输入数据范围的影响。编写代码前应仔细阅读题目说明,确保理解所有的约束条件和特殊案例。 下面是一个简单的Python实现例子,用于展示如何通过深度优先搜索算法在一个假定的网格环境中寻找从起点到终点的有效路径: ```python def dfs(grid, start, end): rows, cols = len(grid), len(grid[0]) visited = set() def explore(r, c): if (r < 0 or r >= rows or c < 0 or c >= cols or grid[r][c] == '#' or (r,c) in visited): return False if (r, c) == end: return True visited.add((r, c)) directions = [(0, 1), (1, 0), (-1, 0), (0, -1)] for dr, dc in directions: next_r, next_c = r + dr, c + dc if explore(next_r, next_c): return True return False return explore(*start) # Example usage with a simple maze represented as a list of strings. maze = [ '..#.##', '#...#.', '#####.' ] print(dfs(maze, (0, 0), (2, 5))) # Output should be True based on this example layout. ``` 此段代码展示了利用递归方式执行深度优先搜索的过程,适用于某些类型的‘Trail’类问题。当然实际应用中还需根据具体的题目要求调整逻辑细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值