Sentence Segmentaion

本文讨论了基本文本处理中的句子分割技术,介绍了使用决策树解决该问题的方法,并探讨了更复杂的决策树特征来提高分类器的性能。文章还提到了对于数值特征的处理难度,并提出可以采用其他分类器如线性回归、支持向量机(SVM)或神经网络等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Our final discussion in basic text processing is  segmenting out sentences from text.

We use a decision tree to solve this question. But it's doesn't enough, we should use more sophisticated decision tree features to gain the classifier. For example, u can get the probablity of one word end of sentences, such ".The".

Actually, the building of decision trees is possible only for every simple features about with six or seven rules. But it's very hard to do for numeric feature. So we can use other classifiers such as linguistic regression or SVMs or neural nets, we can put features into those kinds of classifier.

Well, it's just introducting. We will talk later.

转载于:https://www.cnblogs.com/chuanlong/archive/2013/04/01/2992968.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值