AtCoder Grand Contest 020

A - Move and Win


Time limit : 1sec / Memory limit : 512MB

Score : 300 points

Problem Statement

A game is played on a strip consisting of N cells consecutively numbered from 1 to N.

Alice has her token on cell A. Borys has his token on a different cell B.

Players take turns, Alice moves first. The moving player must shift his or her token from its current cell X to the neighboring cell on the left, cell X−1, or on the right, cell X+1. Note that it's disallowed to move the token outside the strip or to the cell with the other player's token. In one turn, the token of the moving player must be shifted exactly once.

The player who can't make a move loses, and the other player wins.

Both players want to win. Who wins if they play optimally?

Constraints

  • 2≤N≤100
  • 1≤A<BN
  • All input values are integers.

Input

Input is given from Standard Input in the following format:

N A B

Output

Print Alice if Alice wins, Borys if Borys wins, and Draw if nobody wins.


Sample Input 1

Copy
5 2 4

Sample Output 1

Copy
Alice

Alice can move her token to cell 3. After that, Borys will be unable to move his token to cell 3, so he will have to move his token to cell 5. Then, Alice moves her token to cell 4. Borys can't make a move and loses.


Sample Input 2

Copy
2 1 2

Sample Output 2

Copy
Borys

Alice can't make the very first move and loses.


Sample Input 3

Copy
58 23 42

Sample Output 3

Copy
Borys

不存在平手啊,我还在想平手,而且和n无关

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int n,a,b;
    cin>>n>>a>>b;
    if((b-a-1)&1)
        cout<<"Alice";
    else cout<<"Borys";
    return 0;
}

B - Ice Rink Game


Time limit : 2sec / Memory limit : 512MB

Score : 500 points

Problem Statement

An adult game master and N children are playing a game on an ice rink. The game consists of K rounds. In the i-th round, the game master announces:

  • Form groups consisting of Ai children each!

Then the children who are still in the game form as many groups of Ai children as possible. One child may belong to at most one group. Those who are left without a group leave the game. The others proceed to the next round. Note that it's possible that nobody leaves the game in some round.

In the end, after the K-th round, there are exactly two children left, and they are declared the winners.

You have heard the values of A1A2, ..., AK. You don't know N, but you want to estimate it.

Find the smallest and the largest possible number of children in the game before the start, or determine that no valid values of Nexist.

Constraints

  • 1≤K≤105
  • 2≤Ai≤109
  • All input values are integers.

Input

Input is given from Standard Input in the following format:

K
A1 A2  AK

Output

Print two integers representing the smallest and the largest possible value of N, respectively, or a single integer −1 if the described situation is impossible.


Sample Input 1

Copy
4
3 4 3 2

Sample Output 1

Copy
6 8

For example, if the game starts with 6 children, then it proceeds as follows:

  • In the first round, 6 children form 2 groups of 3 children, and nobody leaves the game.
  • In the second round, 6 children form 1 group of 4 children, and 2 children leave the game.
  • In the third round, 4 children form 1 group of 3 children, and 1 child leaves the game.
  • In the fourth round, 3 children form 1 group of 2 children, and 1 child leaves the game.

The last 2 children are declared the winners.


Sample Input 2

Copy
5
3 4 100 3 2

Sample Output 2

Copy
-1

This situation is impossible. In particular, if the game starts with less than 100 children, everyone leaves after the third round.


Sample Input 3

Copy
10
2 2 2 2 2 2 2 2 2 2

Sample Output 3

Copy
2 3

这个人是和n的大小有关,而且是递增的,二分就好,二分范围搞错和不小心强制转换GG两发,R应该是1e18就够了,1e9*1e9

#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long ll;
const int N=1e5+5;
int a[N],k;
ll la(int x)
{
    ll L=2,R=(ll)4e18;
    while(L<=R)
    {
        ll mi=(L+R)/2;
        for(int i=1;i<=k;i++)mi=mi/a[i]*a[i];
        if(mi>x)R=(L+R)/2-1;
        else L=(L+R)/2+1;
    }
    L--;
    ll t=L;
    for(int i=1;i<=k;i++)
    L=L/a[i]*a[i];
    if(L==x)return t;
    else return 0;
 
}
ll lb(int x)
{
    ll L=2,R=(ll)4e18;
    while(L<=R)
    {
        ll mi=(L+R)/2;
        for(int i=1;i<=k;i++)mi=mi/a[i]*a[i];
        if(mi<x) L=(L+R)/2+1;
        else R=(L+R)/2-1;
    }
    ll t=L;
    for(int i=1;i<=k;i++)
    L=L/a[i]*a[i];
    if(L==x)return t;
    else return 0;
}
int main()
{
    scanf("%d",&k);
    for(int i=1;i<=k;i++)scanf("%d",&a[i]);
    ll x=lb(2),y=la(2);
    if(!x)printf("-1");
    else printf("%llu %llu",x,y);
    return 0;
}

C - Median Sum


Time limit : 2sec / Memory limit : 512MB

Score : 700 points

Problem Statement

You are given N integers A1A2, ..., AN.

Consider the sums of all non-empty subsequences of A. There are 2N−1 such sums, an odd number.

Let the list of these sums in non-decreasing order be S1S2, ..., S2N−1.

Find the median of this list, S2N−1.

Constraints

  • 1≤N≤2000
  • 1≤Ai≤2000
  • All input values are integers.

Input

Input is given from Standard Input in the following format:

N
A1 A2  AN

Output

Print the median of the sorted list of the sums of all non-empty subsequences of A.


Sample Input 1

Copy
3
1 2 1

Sample Output 1

Copy
2

In this case, S=(1,1,2,2,3,3,4). Its median is S4=2.


Sample Input 2

Copy
1
58

Sample Output 2

Copy
58

In this case, S=(58).


这个要找比s/2大的数,呜呜呜,就是背包的bitset,还是自己太菜了

#include<bits/stdc++.h>
using namespace std;
const int N=2e6+5;
bitset<N>V;
int main()
{
    int n,s=0;
    scanf("%d",&n);
    V[0]=1;
    for(int i=0,x; i<n; i++)scanf("%d",&x),s+=x,V|=V<<x;
    for(int i=s/2;;i--)
    if(V[i])
    {
        printf("%d\n",s-i);
        return 0;
    }
}

 

转载于:https://www.cnblogs.com/BobHuang/p/8288717.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值