HDU 5100 Chessboard 用 k × 1 的矩形覆盖 n × n 的正方形棋盘


Chessboard

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 335    Accepted Submission(s): 168


Problem Description
Consider the problem of tiling an n×n chessboard by polyomino pieces that are k×1 in size; Every one of the k pieces of each polyomino tile must align exactly with one of the chessboard squares. Your task is to figure out the maximum number of chessboard squares tiled.
 

Input
There are multiple test cases in the input file.
First line contain the number of cases T ( T10000). 
In the next T lines contain T cases , Each case has two integers n and k. ( 1n,k100)
 

Output
Print the maximum number of chessboard squares tiled.
 

Sample Input

    
2 6 3 5 3
 

Sample Output

    
36 24
 

Source
 
用 k × 1 的小矩形覆盖一个 n × n 的正方形棋盘,问正方形棋盘最多能被覆盖多少。
规律就是:假设n<k。肯定不行。
定义mod=n%k;
假设(mod<=k/2),结果为:n*n-mod*mod;
否则结果为:n*n-(k-mod)*(k-mod);
//0MS	228K
#include<stdio.h>
int main()
{
    int t,n,k;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&k);
        if(n<k){printf("0\n");continue;}
        int mod=n%k;
        if(mod<=k/2)printf("%d\n",n*n-mod*mod);
        else printf("%d\n",n*n-(k-mod)*(k-mod));
    }
    return 0;
}


转载于:https://www.cnblogs.com/gavanwanggw/p/7145372.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值