背景减法——自组织算法

本文深入探讨了Maddalena提出的自组织背景减法算法,包括模型表示、神经模型初始化、背景减法和模型更新等核心内容,以及算法在背景减法比赛中的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   自组织背景减法是Maddalena2008年发表的《A self-organizing approach to background subtraction for visual surveillance applications》中提出的,通过自组织的方法自动的生成一张神经网格背景模型。这个背景减法在2012年和2013年的Change detection背景减法比赛中均排名前列。

 模型表示:

         对输入视频的每个像素p都建立一个对应的神经图,每个神经图由n*n个权重向量222018120415629.gif组成。

                       222018123545599.gif=222018125417542.gif(p) i,j=0,……n-1.

将所有的神经图放在同一张图中产生一张背景模型图中。如果一个视频分辨率是R*P,则第t帧产生的2-D神经网络背景图222018127759770.gif的大小就是n*R列,n*P行的。且一个像素点p=xy)中第(ij)个权值向量222018129791242.gifB中的索引就是:

                      222018132138171.gif(n*x+in*y+j)=222018134005413.gifi,j=0,……n-1.

222018137754598.jpg

XXX     视频像素与其对应的神经网络背景模型图

 

神经模型初始化:

    在初始化过程中,作者的核心思想是视频的第一帧222018139795069.gif非常好的近似于真实背景,所以对于每个像素值p,其对应的背景模型的权值向量Mp)由一下公式进行初始化:

222018141667013.gif

 

由上公式可以看出,初始化的神经网络背景模型B,可以看成是一张经过n*n扩大后的视频第一帧222018143697484.gif.

 

背景减法和模型更新:

(1)   寻找最佳匹配:

t时刻给定当前的像素p,它的像素值222018145727955.gif和他的当前的背景模型222018147605197.gif作比较,找出其中与222018150254883.gif最匹配的权重向量BM(p),也就是在颜色空间中与222018152914569.gif距离最近的权重向量:

d(BM(p),222018154945040.gif)=222018157441498.gif

在作者的模型中可以使用RGB颜色空间或者HSV颜色空间,如果是HSV颜色空间的话,其距离公式为:

给定两个像素的值222018159635197.gif

222018161358210.gif

(2)   模型更新:

自组织模型的更新方法与众不同,在再找最佳匹配的权重向量BM(p)后,如果与像素p的当前像素值在颜色空间的距离小于阈值时,判定其当前像素值是背景,在此BM(p)和其在222018163696139.gif中相对应的位置的邻居的权值向量都将进行更新。具体的说,假如BM(p)222018165573382.gif中的位置是222018167445325.gif,则222018169164039.gif的权值向量的更新根据以下公式:

222018171353038.gif  222018173224981.gif

其中  222018174943696.gif222018177137396.gif2-D空间中的邻居的权值向量.k在实验过程中取值为1.

         222018179167867.gif; 222018180886581.gif是学习速率,G(222018184169781.gif)=222018186503009.gif是一个2-D高斯低通滤波器。222018188543480.gif是对像素点p的背景减法掩模值。

         222018190881410.gif

  

 

Algorithm SOBS (Self-Organization Background Subtraction)

   Input: pixel value pt in frame It, t=0, … , LastFrame

Output: background/foreground binary mask value B(pt)

  

1.       Initialize mode C for pixel p0 and store it into A

2.       for t = 1, LastFrame

3.         Find best match cm in C to current sampe pt

4.       if (cm found) then

5.         B(pt) = 0 //background

6.         update A in the neighborhood of cm

7.       else if (pt shadow) then

8.         B(pt) = 0 //background

9.       else

10.     B(pt) = 1 //foreground

 





转载于:https://www.cnblogs.com/zhuangwy-cv/p/3861294.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值