首先感谢
AlexeyAB
大神的darknet
版本
-
下载编译就不说了简单说下训练。
-
首先在目录找到cfg/darknet19.cfg
[net]
# Training
#batch=128
#subdivisions=2
# Testing
batch=1
subdivisions=1
height=256
width=256
min_crop=128
max_crop=448
channels=3
momentum=0.9
decay=0.0005
burn_in=1000
learning_rate=0.1
policy=poly
power=4
max_batches=800000
angle=7
hue=.1
saturation=.75
exposure=.75
aspect=.75
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=linear
[avgpool]
[softmax]
groups=1
-
样本就是 类别_随机数.png 也可以 随机数_类别.png
-
网上很多人博客说什么不要在路径出现多个或者无类别的单词,很多人照猫画虎不解其意实际上我们打开源码根据错误定位到这个函数
void fill_truth(char *path, char **labels, int k, float *truth)
{
int i;
memset(truth, 0, k*sizeof(float));
int count = 0;
for(i = 0; i < k; ++i){
if(strstr(path, labels[i])){
truth[i] = 1;
++count;
//printf("%s %s %d\n", path, labels[i], i);
}
}
if(count != 1 && (k != 1 || count != 0)) printf("Too many or too few labels: %d, %s\n", count, path);
}
-
路径和类别strstr判断的 所以我们可以知道只要路径上只需要一个类别字符就可以了。甚至可以每个样本放在每个文件夹也是可以的
-
编译的时候会有些小问题,这个版本的darknet貌似为了rpc 加了一些c++的代码可以把那几个cpp删掉依赖也注释就行了实际上用不到的
-
搞定这个就可以愉快的训练了,有作者提供的darknet系列分类网络或者res系列的就可以训练分类器了。
-
具体配置网上一大堆,盘他就对了