列存储压缩技巧,除公共除数或者同时减去最小数,字符串压缩的话,直接去重后用数字ID压缩...

探讨了Elasticsearch中DocValues的存储方式及其如何利用特定的数据布局实现高效的压缩,特别是对于数值型数据。此外,还介绍了字符串类型数据的压缩技巧。

Column-store compression

At a high level, doc values are essentially a serialized column-store. As we discussed in the last section, column-stores excel at certain operations because the data is naturally laid out in a fashion that is amenable to those queries.

But they also excel at compressing data, particularly numbers. This is important for both saving space on disk and for faster access. Modern CPU’s are many orders of magnitude faster than disk drives (although the gap is narrowing quickly with upcoming NVMe drives). That means it is often advantageous to minimize the amount of data that must be read from disk, even if it requires extra CPU cycles to decompress.

To see how it can help compression, take this set of doc values for a numeric field:

Doc      Terms
-----------------------------------------------------------------
Doc_1 | 100
Doc_2 | 1000
Doc_3 | 1500
Doc_4 | 1200
Doc_5 | 300
Doc_6 | 1900
Doc_7 | 4200
-----------------------------------------------------------------

The column-stride layout means we have a contiguous block of numbers:[100,1000,1500,1200,300,1900,4200]

xxx

Doc values use several tricks like this. In order, the following compression schemes are checked:

  1. If all values are identical (or missing), set a flag and record the value
  2. If there are fewer than 256 values, a simple table encoding is used
  3. If there are > 256 values, check to see if there is a common divisor
  4. If there is no common divisor, encode everything as an offset from the smallest value

You’ll note that these compression schemes are not "traditional" general purpose compression like DEFLATE or LZ4. Because the structure of column-stores are rigid and well-defined, we can achieve higher compression by using specialized schemes rather than the more general compression algorithms like LZ4.

Note

You may be thinking "Well that’s great for numbers, but what about strings?" Strings are encoded similarly, with the help of an ordinal table. The strings are de-duplicated and sorted into a table, assigned an ID, and then those ID’s are used as numeric doc values. Which means strings enjoy many of the same compression benefits that numerics do.

The ordinal table itself has some compression tricks, such as using fixed, variable or prefix-encoded strings.

  

摘自:https://www.elastic.co/guide/en/elasticsearch/guide/current/_deep_dive_on_doc_values.html

















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6401472.html,如需转载请自行联系原作者


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值