作者:桂。
时间:2017-04-14 06:22:26
链接:http://www.cnblogs.com/xingshansi/p/6685811.html
声明:欢迎被转载,不过记得注明出处哦~
前言
之前梳理了一下非负矩阵分解(Nonnegative matrix factorization, NMF),主要有:
3)拉格朗日乘子法求解NMF(将含限定NMF的求解 一般化)
谱聚类可以参考之前的文章:
1)拉普拉斯矩阵(Laplace Matrix)与瑞利熵(Rayleigh quotient)
2)谱聚类(Spectral clustering)(1):RatioCut
3)谱聚类(Spectral clustering)(2):NCut
总感觉NMF跟聚类有联系,这里试着从聚类角度分析一下非负矩阵分解,主要包括:
1)Kmeans与谱聚类
2)对称非负矩阵分解(symmetric NMF,SyNMF);
3)非对称非负矩阵分解;
内容为自己的学习总结,如果有不对的地方,还请帮忙指出。文中多有借鉴他人的地方,最后一并给出链接。
一、Kmeans与谱聚类
A-Kmeans定义
,准则函数为:
可以重写为:
定义h:
$n_k$为第k类样本的个数,则准则函数变为:
从而Kmeans的优化问题,等价于:
B-Kmeans与谱聚类(Spectral clustering)的联系
上文给出了h的定义: