非负矩阵分解(4):NMF算法和聚类算法的联系与区别

本文探讨非负矩阵分解(NMF)与聚类算法的关系,包括K-means、谱聚类和对称非负矩阵分解(SyNMF)。分析了K-means与谱聚类在矩阵选择上的差异,以及NMF在数据聚类中的应用。通过实例展示了NMF在图像和音乐数据上的处理效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:桂。

时间:2017-04-14   06:22:26

链接:http://www.cnblogs.com/xingshansi/p/6685811.html

声明:欢迎被转载,不过记得注明出处哦~


前言

之前梳理了一下非负矩阵分解(Nonnegative matrix factorization, NMF),主要有:

  1)准则函数及KL散度

  2)NMF算法推导与实现

  3)拉格朗日乘子法求解NMF(将含限定NMF的求解 一般化)

谱聚类可以参考之前的文章:

  1)拉普拉斯矩阵(Laplace Matrix)与瑞利熵(Rayleigh quotient)

  2)谱聚类(Spectral clustering)(1):RatioCut

  3)谱聚类(Spectral clustering)(2):NCut

总感觉NMF跟聚类有联系,这里试着从聚类角度分析一下非负矩阵分解,主要包括:

  1)Kmeans与谱聚类

  2)对称非负矩阵分解(symmetric NMF,SyNMF);

  3)非对称非负矩阵分解;

内容为自己的学习总结,如果有不对的地方,还请帮忙指出。文中多有借鉴他人的地方,最后一并给出链接。

 

一、Kmeans与谱聚类

  A-Kmeans定义

,准则函数为:

可以重写为:

定义h:

$n_k$为第k类样本的个数,则准则函数变为:

从而Kmeans的优化问题,等价于:

  B-Kmeans与谱聚类(Spectral clustering)的联系

上文给出了h的定义:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值