POJ 3160 Father Christmas flymouse 解题报告

一个经典的图DP,首先对无向图进行强联通分量缩点变成DAG,这样就可以在DAG上用拓扑序做DP

需要注意的是点权是有负数的情况为此WA无数次

附代码供后人参考

#include <cstdio>
#include <algorithm>
#include <cstring>
#define DEBUG(x) cout << #x << " " << x << endl;
using namespace std;

class scc
{
private:
        const static int V = 50001;
        const static int E = 150000;

        struct edge
        {
                int v;
                edge *nxt;
        } pool[E * 3], *g[V], *pp, *gscc[V];
        int n, m, st[V], top;
        int val[V], valscc[V], dp[V];
        int tms[V], pt;
        bool reach[V];
        int dfn[V], low[V], idx[V];
        int cnt, depth;
        void dfs(int x);
        void build_newgraph();

        void addnewedge(int u, int v)
        {
                pp->v = v;
                pp->nxt = gscc[u];
                gscc[u] = pp++;
        }
        void toposort(int x);
public:

        void addedge(int u, int v)
        {
                pp->v = v;
                pp->nxt = g[u];
                g[u] = pp++;
        }
        void initialize(int n);
        void solve();
} g;

void scc::initialize(int n)
{
        this->n = n;
        memset(g, 0, sizeof (g));
        memset(reach, false, sizeof (reach));
        memset(dfn, 0, sizeof (dfn));
        for (int i = 0; i < n; i++)
                scanf("%d", &val[i]);
        pp = pool;
        depth = pt = top = cnt = 0;
}

void scc::dfs(int x)
{
        st[++top] = x;
        int w;
        dfn[x] = low[x] = ++depth;
        for (edge *i = g[x]; i != NULL; i = i->nxt)
        {
                w = i->v;
                if (reach[w])
                        continue;
                else if (dfn[w] == 0)
                {
                        dfs(w);
                        if (low[w] < low[x])
                                low[x] = low[w];
                }
                else if (dfn[w] < low[x])
                        low[x] = dfn[w];
        }
        if (low[x] == dfn[x])
        {
                cnt++;
                do
                {
                        w = st[top--];
                        idx[w] = cnt;
                        reach[w] = true;
                }
                while (w != x);
        }
}

void scc::solve()
{
        for (int i = 0; i < n; i++)
                if (!reach[i])
                        dfs(i);
        build_newgraph();
        memset(reach, false, sizeof (reach));
        for (int i = 1; i <= cnt; i++)
                if (!reach[i])
                        toposort(i);
        memset(dp, 0, sizeof (dp));
        for (int i = 0; i < pt; i++)
        {
                int w = tms[i], tmp = 0;
                dp[w] = valscc[w];
                for (edge *j = gscc[w]; j != NULL; j = j->nxt)
                        tmp = max(tmp, dp[j->v]);
                dp[w] += tmp;
        }
        int ans = dp[1];
        for (int i = 2; i <= cnt; i++)
                ans = max(ans, dp[i]);
        printf("%d\n", ans);
}

void scc::toposort(int x)
{
        reach[x] = true;
        for (edge *i = gscc[x]; i != NULL; i = i->nxt)
                if (!reach[i->v])
                        toposort(i->v);
        tms[pt++] = x;
}

void scc::build_newgraph()
{
        memset(gscc, 0, sizeof (gscc));
        memset(valscc, 0, sizeof (valscc));
        for (int i = 0; i < n; i++)
                if(val[i] > 0)
                        valscc[idx[i]] += val[i];
        for (int i = 0; i < n; i++)
                for (edge *j = g[i]; j != NULL; j = j->nxt)
                        if (idx[i] != idx[j->v])
                                addnewedge(idx[i], idx[j->v]);
}

int main()
{
        scc g;
        int n, m, vfrom, vto;
        while (scanf("%d %d", &n, &m) == 2)
        {
                g.initialize(n);
                for (int i = 0; i < m; i++)
                {
                        scanf("%d %d", &vfrom, &vto);
                        g.addedge(vfrom, vto);
                }
                g.solve();
        }
        return 0;
}

转载于:https://www.cnblogs.com/ronaflx/archive/2010/10/14/1850907.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值