Spark 概念学习系列之Spark相比Hadoop MapReduce的特点(二)

Spark相比Hadoop MapReduce的特点

     (1)中间结果输出
     基于MapReduce的计算引擎通常会将中间结果输出到磁盘上,进行存储和容错。 出于任务管道承接的考虑,当一些查询翻译到MapReduce任务时,往往会产生多个Stage,而这些串联的Stage又依赖于底层文件系统(如HDFS)来存储每一个Stage的输出结果。Spark将执行模型抽象为通用的有向无环图执行计划(DAG),这可以将多Stage的任务串联或者并行执行,而无须将Stage中间结果输出到HDFS中。 类似的引擎包括Dryad、Tez。

   

    (2)数据格式和内存布局

     由于MapReduce Schema on Read处理方式会引起较大的处理开销。 Spark抽象出分布式内存存储结构弹性分布式数据集RDD,进行数据的存储。 RDD能支持粗粒度写操作,但对于读取操作,RDD可以精确到每条记录,这使得RDD可以用来作为分布式索引。 Spark的特性是能够控制数据在不同节点上的分区,用户可以自定义分区策略,如Hash分区等。 Shark和Spark SQL在Spark的基础之上实现了列存储和列存储压缩。
 

   (3)执行策略
     在数据Shuffle之前花费了大量的时间来排序,Spark则可减轻上述问题带来的开销。 因为Spark任务在Shuffle中不是所有情景都需要排序,所以支持基于Hash的分布式聚合,调度中采用更为通用的任务执行计划图(DAG),每一轮次的输出结果在内存缓存。

 

  (4)任务调度的开销
    传统的MapReduce系统,如Hadoop,是为了运行长达数小时的批量作业而设计的,在某些极端情况下,提交一个任务的延迟非常高。Spark采用了事件驱动的类库AKKA来启动任务,通过线程池复用线程来避免进程或线程启动和切换开销。

 

 

 

本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/5706933.html,如需转载请自行联系原作者

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值