POJ2437 Muddy roads

本文介绍了一道关于利用固定长度木板覆盖一系列不重叠水坑的问题。通过给出的样例输入输出及详细解释,展示如何使用贪心算法进行有效解决。文章附带了完整的C++代码实现。

 

Description

Farmer John has a problem: the dirt road from his farm to town has suffered in the recent rainstorms and now contains (1 <= N <= 10,000) mud pools. 

Farmer John has a collection of wooden planks of length L that he can use to bridge these mud pools. He can overlap planks and the ends do not need to be anchored on the ground. However, he must cover each pool completely. 

Given the mud pools, help FJ figure out the minimum number of planks he needs in order to completely cover all the mud pools.
  从hzw前辈那里搬来的翻译:
  牧场里下了一场暴雨,泥泞道路上出现了许多水坑,约翰想用一批长度为L的木板将这些水坑盖住.    牧场里的道路可以看成一根数轴,每个水坑可以用数轴上的两个坐标表示,如(3,6)表示从3到6有一个长度为3的水坑.所有的水坑都是不重叠的,(3,6)和(6,9)可以出现在同一个输入数据中,因为它们是两个连续的水坑,但不重叠.
    请你帮助约翰计算最少要用多少块木板才能将所有水坑盖住

Input

* Line 1: Two space-separated integers: N and L 

* Lines 2..N+1: Line i+1 contains two space-separated integers: s_i and e_i (0 <= s_i < e_i <= 1,000,000,000) that specify the start and end points of a mud pool along the road. The mud pools will not overlap. These numbers specify points, so a mud pool from 35 to 39 can be covered by a single board of length 4. Mud pools at (3,6) and (6,9) are not considered to overlap. 

Output

* Line 1: The miminum number of planks FJ needs to use.

Sample Input

3 3
1 6
13 17
8 12

Sample Output

5

Hint

INPUT DETAILS: 

FJ needs to use planks of length 3 to cover 3 mud pools. The mud pools cover regions 1 to 6, 8 to 12, and 13 to 17. 

OUTPUT DETAILS: 

FJ can cover the mud pools with five planks of length 3 in the following way: 
                   111222..333444555....

.MMMMM..MMMM.MMMM....
012345678901234567890

Source

 
 
贪心水题。输入的范围排好序以后挨个铺木板就行。
 
 1 #include<iostream>
 2 #include<algorithm>
 3 #include<cstring>
 4 #include<cstdio>
 5 #include<cmath>
 6 using namespace std;
 7 const int mxn=12000;
 8 struct wd{
 9     int x,y;
10     bool operator < (const wd rhd){
11         return x<rhd.x;
12     }
13 }a[mxn];
14 int n,L;
15 int main(){
16     scanf("%d%d",&n,&L);
17     int i,j;
18     for(i=1;i<=n;i++){
19         scanf("%d%d",&a[i].x,&a[i].y);
20     }
21     sort(a+1,a+n+1);
22     int cnt=0;
23     int now=0;
24     for(i=1;i<=n;i++){
25         now=max(now,a[i].x);//开始铺
26         while(now<a[i].y){
27             now+=L;
28             cnt++;
29         }
30     }
31     printf("%d\n",cnt);
32     return 0;
33 }

 

转载于:https://www.cnblogs.com/SilverNebula/p/5641944.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值