[POI2018]Pionek

本文详细解析了POI2018竞赛中Pionek题目的解题思路,通过将所有移动指令向量进行极角排序,采用尺取法在复制的向量环中寻找连续向量段,以实现棋子离原点最远距离的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[POI2018]Pionek

题目大意:

在无限大的二维平面的原点放置着一个棋子。你有\(n(n\le2\times10^5)\)条可用的移动指令,每条指令可以用一个二维整数向量表示。请你选取若干条指令,使得经过这些操作后,棋子离原点的距离最大。

思路:

将所有向量极角排序,然后你选取的向量一定是里面连续的一段,由于所有向量排成一个环,所以要复制一遍接在后面,最后用尺取法枚举左右端点即可。

时间复杂度\(\mathcal O(n\log n)\)

源代码:

#include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
    register char ch;
    register bool neg=false;
    while(!isdigit(ch=getchar())) neg|=ch=='-';
    register int x=ch^'0';
    while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
    return neg?-x:x;
}
typedef long long int64;
const int N=4e5+2;
struct Point {
    int64 x,y;
    double a;
    bool operator < (const Point &rhs) const {
        return a<rhs.a;
    }
    Point operator + (const Point &rhs) const {
        return (Point){x+rhs.x,y+rhs.y,a+rhs.a};
    }
};
Point p[N],sum[N];
inline int64 sqr(const int64 &x) {
    return x*x;
}
int main() {
    const int n=getint();
    for(register int i=1;i<=n;i++) {
        p[i].x=getint();
        p[i].y=getint();
        p[i].a=atan2(p[i].x,p[i].y);
    }
    std::sort(&p[1],&p[n]+1);
    std::copy(&p[1],&p[n]+1,&p[n+1]);
    for(register int i=n+1;i<=n*2;i++) {
        p[i].a+=M_PI*2;
    }
    int64 ans=0;
    sum[n*2].a=1e8;
    for(register int i=1,j=1;j<=n*2;j++) {
        sum[j]=sum[j-1]+p[j];
        for(;i<=j&&p[j+1].a-p[i].a>=M_PI;i++) {
            ans=std::max(ans,sqr(sum[j].x-sum[i-1].x)+sqr(sum[j].y-sum[i-1].y));
        }
        if(i<=j) ans=std::max(ans,sqr(sum[j].x-sum[i-1].x)+sqr(sum[j].y-sum[i-1].y));
    }
    printf("%lld\n",ans);
    return 0;
}

转载于:https://www.cnblogs.com/skylee03/p/9725127.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值