最优队列就是靠堆实现的,普通的队列是一种先进先出的数据结构,元素在队列尾追加,而从队列头删除。在优先队列中,元素被赋予优先级。当访问元素时,具有最高优先级的元素最先删除。优先队列具有最高级先出 (largest-in,first-out)的行为特征。也就最优队列可以保证队头一定是有限度最大的元素。一个优先队列一般满足以下几个操作:
INSERT(S,x):把元素x插入集合S中
MAXIMUM(S):返回S中具有最大关键字的元素
EXTRACT-MAX(S):去掉并返回S中具有最大关键字的元素
INCREASE-KEY(S,x,k):将元素x的关键字增加到k,这里假设k的值不小于x的关键字值
#include<iostream>
#include<algorithm>
#define maxsize 5000
using namespace std;
int heapsize;
int HeapMaximum(int a[])//返回优先队列中关键字最大的元素
{
return a[1];
}
void MaxHeapify(int a[], int i)//维护最大堆
{
int left = 2 * i;
int right = 2 * i + 1;
int largest;
if (left<=heapsize&&a[i] < a[left])
largest = left;
else
largest = i;
if (right<=heapsize&&a[largest] < a[right])
largest = right;
if (largest != i)
{
swap(a[i], a[largest]);
MaxHeapify(a,largest);
}
}
int HeapExtractMax(int a[])//去掉并返回关键字最大的元素
{
if (heapsize < 1)
cout << "error:heap underflow" << endl;
int max = a[1];
a[1] = a[heapsize];
heapsize--;
MaxHeapify(a, 1);
return max;
}
void HeapIncreaseKey(int a[], int i, int key)//将元素x的关键字增加为key,这里假设key的值不小于原值
{
if (key < a[i])
cout << "error:new key is smaller than current key" << endl;
a[i] = key;
while (i > 1 && a[i / 2] < a[i])
{
swap(a[i], a[i / 2]);
i = i / 2;
}
}
void MaxHeapInsert(int a[], int key)//往优先队列中插入一个关键字为key的元素
{
heapsize++;
a[heapsize] = -0xfffffff;//先增加一个关键字为负无穷的叶节点
HeapIncreaseKey(a, heapsize, key);
}
int main()
{
int n;
int key[maxsize],heap[maxsize];
cin >> n;
heapsize = 0;
for (int i = 1; i <= n; i++)
{
cin >> key[i];
MaxHeapInsert(heap, key[i]);
}
cout << "max is : " << HeapMaximum(heap) << endl;
cout << "heapsize is : " << heapsize << endl;
cout << "drop an item and then the max is : " << HeapExtractMax(heap) << endl;
cout << "heapsize is : " << heapsize << endl;
for (int i = 1; i <= heapsize; i++)
cout << heap[i] << " ";
cout << endl;
cout << "change the third item's key" << endl;
HeapIncreaseKey(heap, 3, 100);
for (int i = 1; i <= heapsize; i++)
cout << heap[i] << " ";
cout << endl;
cout << "max is : " << HeapMaximum(heap) << endl;
return 0;
}