[LeetCode] Container With Most Water

本文探讨了如何使用两个指针解决求解容器中最大水量的问题,并提供了两种不同的C++实现方式。通过从两端向中间逼近的方式,有效地将复杂度控制在O(n)内。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Well, an interesting problem. If you draw some examples on a white board and try to figure out the regularities, you may have noticed that the key to solving this problem is to use two pointers, one starting from the left end and the other starting from the right end. We compute an area for one configuration of the two pointers. Then we need to move them. If the left pointer has lower height, then we know it must be moved to one point with larger height in the right to make it possible for the area to increase. For the right pointer, the case is similar.

The following code is not well optimized, but being pretty short :-)

 1 class Solution {
 2 public:
 3     int maxArea(vector<int> &height) {
 4         int l = 0, r = height.size() - 1, area = 0;
 5         while(l < r) {
 6             area = max(area, min(height[r], height[l]) * (r - l));  
 7             height[l] <= height[r] ? l++ : r--;
 8         }
 9         return area;
10     }
11 };

You may avoid unnecessary checks by moving the left and right pointers to another place with larger height. However, the following code runs slower than the above one...

 1 class Solution {
 2 public:
 3     int maxArea(vector<int> &height) {
 4         int l = 0, r = height.size() - 1, area = 0;
 5         while(l < r) {
 6             int h = min(height[l], height[r]), w = r - l;
 7             area = max(area, h * w);  
 8             while (height[l] <= h && l < r) l++;
 9             while (height[r] <= h && r > l) r--;
10         }
11         return area;
12     }
13 };

Since the problem is not that hard, you may be required to think more, such at its time complexity. Could you prove that it runs in O(n) time? Well, this link has a very clever proof.

转载于:https://www.cnblogs.com/jcliBlogger/p/4646659.html

内容概要:本文档为《400_IB Specification Vol 2-Release-2.0-Final-2025-07-31.pdf》,主要描述了InfiniBand架构2.0版本的物理层规范。文档详细规定了链路初始化、配置与训练流程,包括但不限于传输序列(TS1、TS2、TS3)、链路去偏斜、波特率、前向纠错(FEC)支持、链路速度协商及扩展速度选项等。此外,还介绍了链路状态机的不同状态(如禁用、轮询、配置等),以及各状态下应遵循的规则和命令。针对不同数据速率(从SDR到XDR)的链路格式化规则也有详细说明,确保数据包格式和控制符号在多条物理通道上的一致性和正确性。文档还涵盖了链路性能监控和错误检测机制。 适用人群:适用于从事网络硬件设计、开发及维护的技术人员,尤其是那些需要深入了解InfiniBand物理层细节的专业人士。 使用场景及目标:① 设计和实现支持多种数据速率和编码方式的InfiniBand设备;② 开发链路初始化和训练算法,确保链路两端设备能够正确配置并优化通信质量;③ 实现链路性能监控和错误检测,提高系统的可靠性和稳定性。 其他说明:本文档属于InfiniBand贸易协会所有,为专有信息,仅供内部参考和技术交流使用。文档内容详尽,对于理解和实施InfiniBand接口具有重要指导意义。读者应结合相关背景资料进行学习,以确保正确理解和应用规范中的各项技术要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值