《计算机视觉:模型、学习和推理》一3.3分类分布

本文介绍了分类分布的概念及其与伯努利分布的关系。分类分布适用于K个可能结果的离散情况,当K等于2时退化为伯努利分布。文章探讨了这种分布如何应用于计算机视觉等领域。
3.3分类分布


2017_09_19_124121

图3-3 分类分布是有K个可能结果的离散分布,x∈{1,2,…,K}和K个参数λ1,λ2,…,λK满足λK≥0,∑kλK=1。每一个参数代表结果的一个可能值,当可能结果K的数量为2的时候,分类分布就是伯努利分布分类分布(见图3-3)是一个离散分布,它观察k个可能结果的概率。因此,当仅有两种结果时,伯努利分布是一种特殊的分类分布。在计算机视觉中,因为一个像素的亮度数值通常被量化离散数值,所以可以用分类分布对其建模。真实世界的状态也可以取不同的离散值中的一个。比如,车辆的图像可以分成{小汽车,摩托车,面包车,卡车},状态的不确定性可用分类分布描述。
观察K种可能结果的概率存储在K*1的参数向量λ=[λ1,λ2,…,λK]中,其中,λk∈[0,1],∑Kk=1λk=1。分类分布可以被看成一个有K个柱状条的归一化直方图,可写成如下形式:
2017_09_19_124440
为了简单,我们用记号法:Pr(x)=Catx[λ](3-7)数据也可以在x={e1,e2,…,eK}中取值,ek是第k个单位向量;除了第k个元素是1之外,ek中所有分量均为0。因此有
2017_09_19_124520
其中,xj是x的第j个元素。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值