Educational Codeforces Round 27

本文介绍了几道编程竞赛题目,包括国际象棋锦标赛队伍分配问题、使用两台电视观看节目时间安排问题、调整票号使其幸运所需的最小修改次数问题及驾驶考试中违规行为的最小解释次数问题。通过实际代码示例讲解了如何解决这些问题。
A. Chess Tourney
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Berland annual chess tournament is coming!

Organizers have gathered n chess players who should be divided into two teams with n people each. The first team is sponsored by BerOil and the second team is sponsored by BerMobile. Obviously, organizers should guarantee the win for the team of BerOil.

Thus, organizers should divide all n players into two teams with n people each in such a way that the first team always wins.

Every chess player has its rating ri. It is known that chess player with the greater rating always wins the player with the lower rating. If their ratings are equal then any of the players can win.

After teams assignment there will come a drawing to form n pairs of opponents: in each pair there is a player from the first team and a player from the second team. Every chess player should be in exactly one pair. Every pair plays once. The drawing is totally random.

Is it possible to divide all n players into two teams with n people each so that the player from the first team in every pair wins regardless of the results of the drawing?

Input

The first line contains one integer n (1 ≤ n ≤ 100).

The second line contains n integers a1, a2, ... a2n (1 ≤ ai ≤ 1000).

Output

If it's possible to divide all n players into two teams with n people each so that the player from the first team in every pair wins regardless of the results of the drawing, then print "YES". Otherwise print "NO".

Examples
input
2
1 3 2 4
output
YES
input
1
3 3
output
NO

 把n个数据分为两组,让一组必定赢,平局算输,只要我最弱的比你强就好,sort一下

#include <bits/stdc++.h>
using namespace std;
const int N=2e5+5;
int a[300];
int main()
{
    int n;
    cin>>n;
    for(int i=0;i<2*n;i++)
        cin>>a[i];
    sort(a,a+2*n);
    printf("%s\n",a[n-1]==a[n]?"NO":"YES");
    return 0;
}
C. Two TVs
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Polycarp is a great fan of television.

He wrote down all the TV programs he is interested in for today. His list contains n shows, i-th of them starts at moment li and ends at moment ri.

Polycarp owns two TVs. He can watch two different shows simultaneously with two TVs but he can only watch one show at any given moment on a single TV. If one show ends at the same moment some other show starts then you can't watch them on a single TV.

Polycarp wants to check out all n shows. Are two TVs enough to do so?

Input

The first line contains one integer n (1 ≤ n ≤ 2·105) — the number of shows.

Each of the next n lines contains two integers li and ri (0 ≤ li < ri ≤ 109) — starting and ending time of i-th show.

Output

If Polycarp is able to check out all the shows using only two TVs then print "YES" (without quotes). Otherwise, print "NO" (without quotes).

Examples
input
3
1 2
2 3
4 5
output
YES
input
4
1 2
2 3
2 3
1 2
output
NO

时间安排,贪心处理下,因为之前没有看到两台电视机,忘打else的痛

#include <bits/stdc++.h>
using namespace std;
const int N=2e5+5;
vector<pair<int,int> >a;
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=0; i<n; i++)
    {
        int l,r;
        cin>>l>>r;
        a.push_back(make_pair(l,r));
    }
    sort(a.begin(),a.end());
    int l=a[0].second,l2=-1,f=1;
    for(int i=1; i<n; i++)
    {
        if(a[i].first<=l)
        {

            if(a[i].first<=l2)
            {
                f=0;
                break;
            }
            else
            l2=a[i].second;
        }
        else
        l=a[i].second;
    }
    printf("%s",f?"YES":"NO");
    return 0;
}
B. Luba And The Ticket
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Luba has a ticket consisting of 6 digits. In one move she can choose digit in any position and replace it with arbitrary digit. She wants to know the minimum number of digits she needs to replace in order to make the ticket lucky.

The ticket is considered lucky if the sum of first three digits equals to the sum of last three digits.

Input

You are given a string consisting of 6 characters (all characters are digits from 0 to 9) — this string denotes Luba's ticket. The ticket can start with the digit 0.

Output

Print one number — the minimum possible number of digits Luba needs to replace to make the ticket lucky.

Examples
input
000000
output
0
input
123456
output
2
input
111000
output
1
Note

In the first example the ticket is already lucky, so the answer is 0.

In the second example Luba can replace 4 and 5 with zeroes, and the ticket will become lucky. It's easy to see that at least two replacements are required.

In the third example Luba can replace any zero with 3. It's easy to see that at least one replacement is required.

这个还是有点复杂的,需要暴力模拟下,题意理解错误,不用分成两部分解得

#include <bits/stdc++.h>
using namespace std;
const int N=2e5+5;
char s[7];
int a[6];
int main()
{
    scanf("%s",s);
    int s1=0,s2=0;
    for(int i=0; i<3; i++)
    {
        s1+=s[i]-'0';
        a[i]=s[i]-'0';
    }
    for(int i=3; i<6; i++)
    {
        s2+=s[i]-'0';
        a[i]=s[i]-'0';
    }
    int s3=s1-s2;
    if(s3>0)
    {
        for(int i=3; i<6; i++)
            a[i]=9-a[i];
    }
    else
    {
        for(int i=0; i<3; i++)
            a[i]=9-a[i];
        s3=-s3;
    }
    sort(a,a+6);
    for(int i=5; i>1; i--)
    {
        if(s3<=0)return 0*printf("%d",5-i);
        s3-=a[i];
    }
    return 0;
}
D. Driving Test
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Polycarp has just attempted to pass the driving test. He ran over the straight road with the signs of four types.

  • speed limit: this sign comes with a positive integer number — maximal speed of the car after the sign (cancel the action of the previous sign of this type);
  • overtake is allowed: this sign means that after some car meets it, it can overtake any other car;
  • no speed limit: this sign cancels speed limit if any (car can move with arbitrary speed after this sign);
  • no overtake allowed: some car can't overtake any other car after this sign.

Polycarp goes past the signs consequentially, each new sign cancels the action of all the previous signs of it's kind (speed limit/overtake). It is possible that two or more "no overtake allowed" signs go one after another with zero "overtake is allowed" signs between them. It works with "no speed limit" and "overtake is allowed" signs as well.

In the beginning of the ride overtake is allowed and there is no speed limit.

You are given the sequence of events in chronological order — events which happened to Polycarp during the ride. There are events of following types:

  1. Polycarp changes the speed of his car to specified (this event comes with a positive integer number);
  2. Polycarp's car overtakes the other car;
  3. Polycarp's car goes past the "speed limit" sign (this sign comes with a positive integer);
  4. Polycarp's car goes past the "overtake is allowed" sign;
  5. Polycarp's car goes past the "no speed limit";
  6. Polycarp's car goes past the "no overtake allowed";

It is guaranteed that the first event in chronological order is the event of type 1 (Polycarp changed the speed of his car to specified).

After the exam Polycarp can justify his rule violations by telling the driving instructor that he just didn't notice some of the signs. What is the minimal number of signs Polycarp should say he didn't notice, so that he would make no rule violations from his point of view?

Input

The first line contains one integer number n (1 ≤ n ≤ 2·105) — number of events.

Each of the next n lines starts with integer t (1 ≤ t ≤ 6) — the type of the event.

An integer s (1 ≤ s ≤ 300) follows in the query of the first and the third type (if it is the query of first type, then it's new speed of Polycarp's car, if it is the query of third type, then it's new speed limit).

It is guaranteed that the first event in chronological order is the event of type 1 (Polycarp changed the speed of his car to specified).

Output

Print the minimal number of road signs Polycarp should say he didn't notice, so that he would make no rule violations from his point of view.

Examples
input
11
1 100
3 70
4
2
3 120
5
3 120
6
1 150
4
3 300
output
2
input
5
1 100
3 200
2
4
5
output
0
input
7
1 20
2
6
4
6
6
2
output
2
Note

In the first example Polycarp should say he didn't notice the "speed limit" sign with the limit of 70 and the second "speed limit" sign with the limit of 120.

In the second example Polycarp didn't make any rule violation.

In the third example Polycarp should say he didn't notice both "no overtake allowed" that came after "overtake is allowed" sign.

 

 问你搞过的操作次数最少,直接stl搞一下就好了

#include <bits/stdc++.h>
using namespace std;
int main()
{
    int n;
    scanf("%d",&n);
    int now=0,lim=0,cnt=0;
    vector<int> V;
    for(int i=1; i<=n; i++)
    {
        int t,s;
        scanf("%d",&t);
        if(t==1)
        {
            scanf("%d",&s);
            now=s;
            while(!V.empty() && now>V.back())
                V.pop_back(),cnt++;
        }
        if(t==2)cnt+=lim,lim=0;
        if(t==3)
        {
            scanf("%d",&s);
            V.push_back(s);
            while(!V.empty() && now>V.back())
                V.pop_back(),cnt++;
        }
        if(t==4)lim=0;
        if(t==5)V.clear();
        if(t==6)lim++;
    }
    return 0*printf("%d\n",cnt);
}

 

转载于:https://www.cnblogs.com/BobHuang/p/7407462.html

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值