Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead.
For example, given the array [2,3,1,2,4,3]
and s = 7
,
the subarray [4,3]
has the minimal length under the problem constraint.
More practice:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
Credits:
Special thanks to @Freezen for adding this problem and creating all test cases.
Hide Similar Problems
解题思路:题目大概的意思是寻找最短的数组和大于等于sum, 用遍历的思想。第一个到滴n个, 答案(如4,3)一定是按顺序搜索到的。
两个指针sum和end标定。start从0開始
(1)我们从下标0開始搜索大于sum的,
(2)假设大于sum,则start往后一格。,end记住位置
(3)假设start-往后走。sum减小之前的start上的数,此时sum还大于s返回2,否则返回(1)
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums)
{
if(nums.size()==0)
return 0;
int start=0;
int end;
int numMin;
int AnswernumMin=INT_MAX;
int sum=0;
for (int i=0;i<nums.size();i++)
{
sum+=nums[i];
while(sum>=s)
{
end=i;
numMin=end-start+1;//length mean has 0 means 1,start=end;
if (numMin<AnswernumMin)
{
AnswernumMin=numMin;
}
sum=sum-nums[start];
start=start+1; //start forward one!
}
}
if (AnswernumMin==INT_MAX)
{
return 0;
}
return AnswernumMin;
}
};