[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.1 一维磁流体力学方程组

本文探讨了一维磁流体力学方程组及其理想情况下的形式,并分析了这些方程组的数学特性,如对称双曲性和严格双曲性。通过对比不同条件下的一维磁流体力学方程组,加深对磁场与流体动力学相互作用的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.  当磁流体力学方程组中的量只依赖于 $t$ 及一个空间变量时, 该方程组称为一维的.

 

 

2.  一维磁流体力学方程组 $$\beex \bea \cfrac{\p H_2}{\p t}& +u_1\cfrac{\p H_2}{\p x} +H_2\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_2}{\p x} =\cfrac{1}{\sigma\mu_0}\cfrac{\p^2H_2}{\p x^2},\\ \cfrac{\p H_3}{\p t}&+u_1\cfrac{\p H_3}{\p x} +H_3\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_3}{\p x} =\cfrac{1}{\sigma\mu_0}\cfrac{\p^2H_3}{\p x^2},\\ \cfrac{\p \rho}{\p t}&+u_1\cfrac{\p \rho}{\p x}+\rho\cfrac{\p u_1}{\p x}=0,\\ \cfrac{\p u_1}{\p t}&+u_1\cfrac{\p u_1}{\p x} +\cfrac{1}{\rho}\cfrac{\p p}{\p x} -\cfrac{1}{\rho}\cfrac{\p}{\p x} \sez{\sex{\cfrac{4}{3}\bar \mu+\bar \mu'}\cfrac{\p u_1}{\p x}} +\cfrac{\mu_0}{\rho}\sex{H_2\cfrac{\p H_2}{\p x}+H_3\cfrac{\p H_3}{\p x}}=F_1,\\ \cfrac{\p u_2}{\p t}& +u_1\cfrac{\p u_2}{\p x} -\cfrac{1}{\rho}\cfrac{\p }{\p x}\sex{\bar \mu \cfrac{\p u_2}{\p x}} -\cfrac{\mu_0}{\rho}H_1\cfrac{\p H_2}{\p x}=F_2,\\ \cfrac{\p u_3}{\p t}&+u_1\cfrac{\p u_3}{\p x} -\cfrac{1}{\rho}\cfrac{\p}{\p x}\sex{\bar \mu\cfrac{\p u_3}{\p x}} -\cfrac{\mu_0}{\rho }H_1\cfrac{\p H_3}{\p x}=F_3,\\ \rho T\cfrac{\p S}{\p t}& +\rho T u_1\cfrac{\p S}{\p x} -\sex{\cfrac{4}{3}\bar \mu+\mu'}\sex{\cfrac{\p u_1}{\p x}}^2 -\bar \mu\sex{\cfrac{\p u_2}{\p x}}^2 -\bar\mu \sex{\cfrac{\p u_3}{\p x}}^2 =\cfrac{\p}{\p x}\sex{\kappa\cfrac{\p T}{\p x}}. \eea \eeex$$

 

 

3.  一维理想磁流体力学方程组 $$\beex \bea \cfrac{\p H_2}{\p t}& +u_1\cfrac{\p H_2}{\p x} +H_2\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_2}{\p x} =0,\\ \cfrac{\p H_3}{\p t}&+u_1\cfrac{\p H_3}{\p x} +H_3\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_3}{\p x} =0,\\ \cfrac{\p \rho}{\p t}&+u_1\cfrac{\p \rho}{\p x}+\rho\cfrac{\p u_1}{\p x}=0,\\ \cfrac{\p u_1}{\p t}&+u_1\cfrac{\p u_1}{\p x} +\cfrac{1}{\rho}\sex{\tilde c^2\cfrac{\p \rho}{\p x}+\cfrac{\p p}{\p S}\cfrac{\p S}{\p x}} +\cfrac{\mu_0}{\rho}\sex{H_2\cfrac{\p H_2}{\p x}+H_3\cfrac{\p H_3}{\p x}}=F_1,\\ \cfrac{\p u_2}{\p t}& +u_1\cfrac{\p u_2}{\p x} -\cfrac{\mu_0}{\rho}H_1\cfrac{\p H_2}{\p x}=F_2,\\ \cfrac{\p u_3}{\p t}&+u_1\cfrac{\p u_3}{\p x} -\cfrac{\mu_0}{\rho }H_1\cfrac{\p H_3}{\p x}=F_3,\\ \cfrac{\p S}{\p t}&+u_1\cfrac{\p S}{\p x}=0.  \eea \eeex$$

 

(1)  其为对称双曲组.

 

(2)  当 $H_1\neq 0$, $H_2^2+H_3^2\neq 0$ 时, 其为一维严格双曲组.

 

(3)  当 $H_1=0$ 或 $H_2^2+H_3^2=0$ 时, 其为一维双曲组.

资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 无锡平芯微半导体科技有限公司生产的A1SHB三极管(全称PW2301A)是一款P沟道增强型MOSFET,具备低内阻、高重复雪崩耐受能力以及高效电源切换设计等优势。其技术规格如下:最大漏源电压(VDS)为-20V,最大连续漏极电流(ID)为-3A,可在此条件下稳定工作;栅源电压(VGS)最大值为±12V,能承受正反向电压;脉冲漏极电流(IDM)可达-10A,适合处理短暂高电流脉冲;最大功率耗散(PD)为1W,可防止器件过热。A1SHB采用3引脚SOT23-3封装,小型化设计利于空间受限的应用场景。热特性方面,结到环境的热阻(RθJA)为125℃/W,即每增加1W功率损耗,结温上升125℃,提示设计电路时需考虑散热。 A1SHB的电气性能出色,开关特性优异。开关测试电路及波形图(图1、图2)展示了不同条件下的开关性能,包括开关上升时间(tr)、下降时间(tf)、开启时间(ton)和关闭时间(toff),这些参数对评估MOSFET在高频开关应用中的效率至关重要。图4呈现了漏极电流(ID)漏源电压(VDS)的关系,图5描绘了输出特性曲线,反映不同栅源电压下漏极电流的变化。图6至图10进一步揭示性能特征:转移特性(图7)显示栅极电压(Vgs)对漏极电流的影响;漏源开态电阻(RDS(ON))随Vgs变化的曲线(图8、图9)展现不同控制电压下的阻抗;图10可能涉及电容特性,对开关操作的响应速度和稳定性有重要影响。 A1SHB三极管(PW2301A)是高性能P沟道MOSFET,适用于低内阻、高效率电源切换及其他多种应用。用户在设计电路时,需充分考虑其电气参数、封装尺寸及热管理,以确保器件的可靠性和长期稳定性。无锡平芯微半导体科技有限公司提供的技术支持和代理商服务,可为用户在产品选型和应用过程中提供有
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值