Buy or Build (poj 2784 最小生成树)

BuyorBuild问题解析

Buy or Build
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 1348 Accepted: 533

Description

World Wide Networks (WWN) is a leading company that operates large telecommunication networks. WWN would like to setup a new network in Borduria, a nice country that recently managed to get rid of its military dictator Kurvi-Tasch and which is now seeking for investments of international companies (for a complete description of Borduria, have a look to the following Tintin albums ``King Ottokar's Sceptre", ``The Calculus Affair" and ``Tintin and the Picaros"). You are requested to help WWN todecide how to setup its network for a minimal total cost.
Problem
There are several local companies running small networks (called subnetworks in the following) that partially cover the n largest cities of Borduria. WWN would like to setup a network that connects all n cities. To achieve this, it can either build edges between cities from scratch or it can buy one or several subnetworks from local companies. You are requested to help WWN to decide how to setup its network for a minimal total cost.
  • All n cities are located by their two-dimensional Cartesian coordinates.
  • There are q existing subnetworks. If q>=1 then each subnetwork c ( 1<=c<=q ) is defined by a set of interconnected cities (the exact shape of a subnetwork is not relevant to our problem).
  • A subnetwork c can be bought for a total cost wc and it cannot be split (i.e., the network cannot be fractioned).
  • To connect two cities that are not connected through the subnetworks bought, WWN has to build an edge whose cost is exactly the square of the Euclidean distance between the cities.

You have to decide which existing networks you buy and which edges you setup so that the total cost is minimal. Note that the number of existing networks is always very small (typically smaller than 8).
A 115 Cities Instance
Consider a 115 cities instance of the problem with 4 subnetworks (the 4 first graphs in Figure 1). As mentioned earlier the exact shape of a subnetwork is not relevant still, to keep figures easy to read, we have assumed an arbitrary tree like structure for each subnetworks. The bottom network in Figure 1 corresponds to the solution in which the first and the third networks have been bought. Thin edges correspond to edges build from scratch while thick edges are those from one of the initial networks.

Input

The first line contains the number n of cities in the country ( 1<=n<=1000 ) followed by the number q of existing subnetworks ( 0<=q<=8 ). Cities are identified by a unique integer value ranging from 1 to n . The first line is followed by q lines (one per subnetwork), all of them following the same pattern: The first integer is the number of cities in the subnetwork. The second integer is the the cost of the subnetwork (not greater than 2 x 10 6 ). The remaining integers on the line (as many as the number of cities in the subnetwork) are the identifiers of the cities in the subnetwork. The last part of the file contains n lines that provide the coordinates of the cities (city 1 on the first line, city 2 on the second one, etc). Each line is made of 2 integer values (ranging from 0 to 3000) corresponding to the integer coordinates of the city.

Output

Your program has to write the optimal total cost to interconnect all cities.

Sample Input

7 3
2 4 1 2
3 3 3 6 7
3 9 2 4 5
0 2
4 0
2 0
4 2
1 3
0 5
4 4

Sample Output

17

Hint

Sample Explanation: The above instance is shown in Figure 2. An optimal solution is described in Figure 3 (thick edges come from an existing network while thin edges have been setup from scratch).


Figure 3: An optimal solution of the 7 City instance in which which the first and second existing networkshave been bought while two extra edges (1, 5) and (2, 4)

Source


题意:n个城市,告诉每一个城市的坐标,还有q个联通块,如今要把这n个城市连起来,能够购买联通块(每一个有一定的费用),或者新建一条边(费用为点之间的距离的平方)。问最小费用是多少。

思路:q非常小。二进制枚举选哪些块。每次kruskal一遍,求最小值。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define mod 1000000009
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b)  for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b)  for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v)   memset ((t) , v, sizeof(t))
#define sf(n)       scanf("%d", &n)
#define sff(a,b)    scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf          printf
#define DBG         pf("Hi\n")
typedef long long ll;
using namespace std;

const int maxn = 1005;
const int MAXN = 500500;

struct Node
{
    int x,y;
}node[maxn];

struct Edge
{
    int u,v,len;
    bool operator<(const Edge &a)const
    {
        return len<a.len;
    }
}edge[MAXN];

int father[maxn],cost[10];
int n,q,num;
vector<int>g[10];

void init()
{
    for (int i=0;i<=n;i++)
        father[i]=i;
}

void addedge(int u,int v)
{
    edge[num].u=u;
    edge[num].v=v;
    edge[num++].len=(node[u].x-node[v].x)*(node[u].x-node[v].x)+(node[u].y-node[v].y)*(node[u].y-node[v].y);
}

int find_father(int x)
{
    if (x!=father[x])
        father[x]=find_father(father[x]);
    return father[x];
}

bool Union(int a,int b)
{
    int fa=find_father(a);
    int fb=find_father(b);
    if (fa==fb) return false;
    father[fa]=fb;
    return true;
}

int Kruskal()
{
    int ans=0;
    int cnt=0;
    for (int i=0;i<num;i++)
    {
        if (Union(edge[i].u,edge[i].v))
        {
            ans+=edge[i].len;
            cnt++;
        }
        if (cnt==n-1) break;
    }
    return ans;
}

void solve()
{
    init();
    int ans=Kruskal();
    for (int i=0;i<(1<<q);i++)
    {
        init();
        int all=0;
        for (int j=0;j<q;j++)
        {
            if (!((i>>j)&1)) continue;
            all+=cost[j];
            for (int k=1;k<g[j].size();k++)
                Union(g[j][k],g[j][0]);
        }
        ans=min(ans,all+Kruskal());
    }
    pf("%d\n",ans);
}

int main()
{
    int i,j,t,number,x;
//    sf(t);
//    while (t--)
    {
        sff(n,q);
        num=0;
        for (i=0;i<q;i++)
        {
            g[i].clear();
            sff(number,cost[i]);
            for (j=0;j<number;j++)
            {
                sf(x);
                g[i].push_back(x);
            }
        }
        for (i=1;i<=n;i++)
            sff(node[i].x,node[i].y);
        for (i=1;i<=n;i++)
            for (j=i+1;j<=n;j++)
                addedge(i,j);
        sort(edge,edge+num);
        solve();
//        if (t) puts("");
    }
    return 0;
}
/*
1

7 3
2 4 1 2
3 3 3 6 7
3 9 2 4 5
0 2
4 0
2 0
4 2
1 3
0 5
4 4
*/



转载于:https://www.cnblogs.com/yutingliuyl/p/6878266.html

内容概要:本文介绍了一个基于Matlab的综合能源系统优化调度仿真资源,重点实现了含光热电站、有机朗肯循环(ORC)和电含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)转气(P2G)技术的冷、热、电多能互补系统的优化调度模型。该模型充分考虑多种能源形式的协同转换与利用,通过Matlab代码构建系统架构、设定约束条件并求解优化目标,旨在提升综合能源系统的运行效率与经济性,同时兼顾灵活性供需不确定性下的储能优化配置问题。文中还提到了相关仿真技术支持,如YALMIP工具包的应用,适用于复杂能源系统的建模与求解。; 适合人群:具备一定Matlab编程基础和能源系统背景知识的科研人员、研究生及工程技术人员,尤其适合从事综合能源系统、可再生能源利用、电力系统优化等方向的研究者。; 使用场景及目标:①研究含光热、ORC和P2G的多能系统协调调度机制;②开展考虑不确定性的储能优化配置与经济调度仿真;③学习Matlab在能源系统优化中的建模与求解方法,复现高水平论文(如EI期刊)中的算法案例。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码和案例文件,按照目录顺序逐步学习,重点关注模型构建逻辑、约束设置与求解器调用方式,并通过修改参数进行仿真实验,加深对综合能源系统优化调度的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值