【SICP练习】111 练习3.24

本文介绍了一种使用自定义键相等性测试的过程来构造表的方法。通过这种方式,可以实现模糊匹配而非精确匹配,这对于数值键特别有用。文章提供了一个具体的实现方案,包括构造表、插入和查找操作。

练习3-24

原文

Exercise 3.24. In the table implementations above, the keys are tested for equality using equal? (called by assoc). This is not always the appropriate test. For instance, we might have a table with numeric keys in which we don’t need an exact match to the number we’re looking up, but only a number within some tolerance of it. Design a table constructor make-table that takes as an argument a same-key? procedure that will be used to test “equality” of keys. Make-table should return a dispatch procedure that can be used to access appropriate lookup and insert! procedures for a local table.

代码

(define (make-table same-key?)
    (let ((local-table (list '*table*)))
       (define (lookup key-1 key-2)
          (let ((subtable (assoc key-1 (cdr local-table))))
             (if subtable (let ((record (assoc key-2 (cdr subtable))) (if record (cdr record) false)) false)))
      (define (insert! key-1 key-2 value)
          (let ((subtable (assoc key-1 (cdr local-table)))) (if subtable (let ((record (assoc key-2 (cdr subtable)))) (if record (set-cdr! record value) (set-cdr! subtable (cons (key-2 value) (cdr subtable))))) (set-cdr! local-table (cons (list key-1 (cons key-2 value)) (cdr local-table)))))
            'ok)
        (define (assoc key records)
            (cond ((null? records) false) ((same-key? key (caar records)) (car records)) (else (assoc key (cdr records)))))      
        (define (dispatch m)
            (cond ((eq? m 'lookup-proc) lookup) ((eq? m 'insert-proc!) insert!) (else (error "Unknown operation -- TABLE" m))))
        dispatch))



感谢访问,希望对您有所帮助。 欢迎关注或收藏、评论或点赞。


为使本文得到斧正和提问,转载请注明出处:
http://blog.youkuaiyun.com/nomasp


内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值